publication . Part of book or chapter of book . 2021

The Potential of Sentinel-2 Satellite Images for Land-Cover/Land-Use and Forest Biomass Estimation: A Review

Crismeire Isbaex; Ana Margarida Coelho;
Open Access English
  • Published: 10 Feb 2021
  • Publisher: IntechOpen
Abstract
<jats:p>Mapping land-cover/land-use (LCLU) and estimating forest biomass using satellite images is a challenge given the diversity of sensors available and the heterogeneity of forests. Copernicus program served by the Sentinel satellites family and the Google Earth Engine (GEE) platform, both with free and open services accessible to its users, present a good approach for mapping vegetation and estimate forest biomass on a global, regional, or local scale, periodically and in a repeated way. The Sentinel-2 (S2) systematically acquires optical imagery and provides global monitoring data with high spatial resolution (10–60 m) images. Given the novelty of informat...
Persistent Identifiers
Subjects
free text keywords: Land cover land use, Satellite, Biomass, Environmental science, Forestry
Communities
Agricultural and Food Sciences
Rural Digital Europe
Download fromView all 2 versions
https://api.intechopen.com/cha...
Part of book or chapter of book
Provider: UnpayWall
InTech
Part of book or chapter of book . 2021
Provider: InTech
http://www.intechopen.com/down...
Part of book or chapter of book . 2021
Provider: Crossref
48 references, page 1 of 4

[1] Askar, Nuthammachot N, Phairuang W, Wicaksono P, Sayektiningsih T. Estimating aboveground biomass on private forest using sentinel-2 imagery. Journal of Sensors. 2018;2018:1-11. DOI: 10.1155/2018/6745629

[2] Szostak M, Hawryło P, Piela D. Using of Sentinel-2 images for automation of the forest succession detection. European Journal of Remote Sensing. 2018;51(1):142-149. DOI: 10.1080/22797254.2017.1412272

[3] Caiserman A, Dumas D, Bennafla K, Faour G, Amiraslani F. Application of remotely sensed imagery and socioeconomic surveys to map crop choices in the Bekaa Valley (Lebanon). Agriculture. 2019;9(3):1-19. DOI: 10.3390/agriculture9030057

[4] Carranza C, Benninga H, van der Velde R, van der Ploeg M. Monitoring agricultural field trafficability using Sentinel-1. Agricultural Water Management. 2019;224:1-12. DOI: 10.1016/j.agwat.2019.105698 remote sensing data. Remote Sensing of Environment. 2016;184:668-681. DOI: 10.1016/j.rse.2016.07.030

[8] Ali A, Ullah S, Bushra S, Ahmad N, Ali A. Quantifying forest carbon stocks by integrating satellite images and forest inventory data. Austrian Journal of Forest Science. 2018;2:93-117

[9] Lu D, Weng Q . A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing. 2007;28(5):823-870. DOI: 10.1080/01431160600746456

[10] Li M, Zang S, Zhang B, Li S, Wu C. A review of remote sensing image classification techniques: The role of spatio-contextual information. European Journal of Remote Sensing. 2014;47(1):389-411. DOI: 10.5721/ EuJRS20144723

[11] Bolyn C, Michez A, Gaucher P, Lejeune P, Bonnet S. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery. Biotechnology, Agronomy, Society and Environment. 2018;22(3):172-187. DOI: 10.25518/1780-4507.16524 [OpenAIRE]

[12] Zheng B, Myint SW, Thenkabail PS, Aggarwal RM. A support vector machine to identify irrigated crop types using time-series Landsat NDVI data. International Journal of Applied Earth Observation and Geoinformation. 2015;34(1):103- 112. DOI: 10.1016/j.jag.2014.07.002

[13] Lu D, Chen Q , Wang G, Liu L, Li G, Moran E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth. 2016;9(1):63-105. DOI: 10.1080/17538947.2014.990526

[14] Alilou H, Moghaddam Nia A, Keshtkar H, Han D, Bray M. A

[15] Turner W, Rondinini C, Pettorelli N, Mora B, Leidner AK, Szantoi Z, et al. Free and open-access satellite data are key to biodiversity conservation. Biological Conservation. 2015;182:173- 176. DOI: 10.1016/j.biocon.2014.11.048 [OpenAIRE]

[16] Chen Y, Guerschman JP, Cheng Z, Guo L. Remote sensing for vegetation monitoring in carbon capture storage regions: A review. Applied Energy. 2019;240:312-326. DOI: 10.1016/j. apenergy.2019.02.027

[17] Spiekermann R, Brandt M, Samimi C. Woody vegetation and land cover changes in the Sahel of Mali (1967-2011). International Journal of Applied Earth Observation and Geoinformation. 2015;34(1):113-121. DOI: 10.1016/j.jag.2014.08.007

[18] Fassnacht FE, Latifi H, Stereńczak K, Modzelewska A, Lefsky M, Waser LT, et al. Review of studies on tree species classification from remotely sensed data. Remote Sensing of Environment. 2016;186: 64-87. DOI: 10.1016/j.rse.2016.08.013

48 references, page 1 of 4
Any information missing or wrong?Report an Issue