Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Canadian Journal of ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Canadian Journal of Forest Research
Article . 2012 . Peer-reviewed
License: CSP TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Modeling an Integrated Market for Sawlogs, Pulpwood and Forest Bioenergy

Authors: Kong, Jiehong; Rönnqvist, Mikael; Frisk, Mikael;

Modeling an Integrated Market for Sawlogs, Pulpwood and Forest Bioenergy

Abstract

Traditionally, most applications in the initial stage of forest supply chain deal with sawlogs to sawmills, pulpwood to pulp or paper mills and forest residues to heating plants. However, in the past decades, soaring prices of fossil fuel, global awareness about CO2 emission and increasing attention to domestic resource security have boosted the development of alternative renewable energy, among which forest bioenergy is the most promising and feasible choice for medium- and large-scale heating and electricity generation. Different subsidies and incentive policies for green energy further promote the utilization of forest bioenergy. As a result, there is a trend that pulpwood may be forwarded to heating plants as complementary forest bioenergy. Though pulpwood is more expensive than forest residues, it is more efficient to transport and has higher energy content. The competition between traditional forest industries and wood-energy facilities, expected to grow in the future, is very sensitive for the forest companies as they are involved in all activities. In this paper, we develop a model that all raw materials in the forest, i.e. sawlogs, pulpwood and forest residues, and byproducts from sawmills, i.e. wood chips and bark, exist in an integrated market where pulpwood can be sent to heating plants as bioenergy. It represents a multi-period multi-commodity network planning problem with multiple sources of supply, i.e. pre-selected harvest areas, and multiple kinds of destination, i.e. sawmills, pulp mills and heating plants. The decisions incorporate purchasing the raw materials in harvest areas, reassigning byproducts from sawmills, transporting those assortments to different points for chipping, storing, wood-processing or wood-fired, and replenishing fossil fuel when necessary. Moreover, different from the classic wood procurement problem, we take the unit purchasing costs of raw materials as variables, on which the corresponding supplies of different assortments linearly depend. With this price mechanism, the popularity of harvest areas can be distinguished. The objective of the problem is to minimize the total cost for the integrated market including the purchasing cost of raw materials. Therefore, the model is a quadratic programming (QP) problem with a quadratic objective function and linear constraints. A large case study in southern Sweden under different scenario assumptions is implemented to simulate the integrated market and to study how price restriction, market regulation, demand fluctuation, policy implementation and exogenous change in price for fossil fuel will influence the entire wood flows. Pair-wise comparisons show that in the integrated market, competition for raw materials between forest bioenergy facilities and traditional forest industries pushes up the purchasing costs of pulpwood. The results also demonstrate that resources can be effectively utilized with the price mechanism in supply market. The overall energy value of forest bioenergy delivered to heating plants is 23% more than the amount in the situation when volume and unit purchasing cost of raw materials are fixed.

Subjects by Vocabulary

Microsoft Academic Graph classification: Natural resource economics Total cost Supply chain engineering.material Raw material Bioenergy business.industry Pulp (paper) Price mechanism Fossil fuel Pulpwood Forestry Pulp and paper industry Purchasing Renewable energy engineering Environmental science business

JEL Classification: jel:L70 jel:L73

Keywords

Global and Planetary Change, Ecology, Forestry, Forest supply chain; integrated market; bioenergy; wood procurement; wood distribution; quadratic programming

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Average
bronze