Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental and Cl...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Environmental and Climate Technologies
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
CONICET Digital
Article . 2016
Data sources: CONICET Digital
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Developing an Agro-Ecological Zoning Model for Tumbleweed (Salsola kali), as Energy Crop in Drylands of Argentina

Authors: Falasca, Silvia; Pitta-Álvarez, Sandra; Ulberich, Ana Cristina;

Developing an Agro-Ecological Zoning Model for Tumbleweed (Salsola kali), as Energy Crop in Drylands of Argentina

Abstract

Salsola kali is considered extremely valuable as an energy crop worldwide because it adapts easily to environments with strong abiotic stresses (hydric, saline and alkaline) and produces large amounts of biomass in drylands. This species is categorized as an important weed in Argentina. The aim of this work was to design an agro-ecological zoning model for tumbleweed in Argentina, employing a Geography Information System. Based on the bioclimatic requirements for the species and the climatic data for Argentina (1981–2010 period), an agro-climatic suitability map was drawn. This map was superimposed on the saline and alkaline soil maps delineated by the Food and Agriculture Organization for dry climates, generating the agro-ecological zoning on a scale of 1 : 500 000. This zoning revealed very suitable and suitable cultivation areas on halomorphic soils. The potential growing areas extend from N of the Salta province (approximately 22° S) to the Santa Cruz province (50° S). The use of tumbleweed on halomorphic soils under semi-arid to arid conditions, for the dual purpose of forage use and source of lignocellulosic material for bioenergy, could improve agricultural productivity in these lands. Furthermore, it could also contribute to their environmental sustainability, since the species can be used to reclaim saline soils over the years. Based on international bibliography, the authors outlined an agro-ecological zoning model. This model may be applied to any part of the world, using the agro-ecological limits presented here. Fil: Falasca, Silvia Liliana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Pitta Alvarez, Sandra Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Micología y Botánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Micología y Botánica; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina Fil: Ulberich, Ana Cristina. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Humanas. Centro de Investigaciones Ecogeográficas y Ambientales; Argentina

Countries
Latvia, Argentina
Subjects by Vocabulary

Microsoft Academic Graph classification: Salsola Kali Environmental protection biology Tumbleweed Forestry biology.organism_classification Energy crop Geography Zoning

Keywords

TJ807-830, AGROCLIMATIC SUITABILITY, DRYLANDS, Salsola kali; bioclimatic requirements; agroclimatic suitability; drylands; agro-ecological zoning model; Argentina, Renewable energy sources, salsola kali, agroclimatic suitability, agro-ecological zoning model, argentina, BIOCLIMATIC REQUIREMENTS, General Environmental Science, AGRO-ECOLOGICAL ZONING MODEL, drylands, ARGENTINA, Renewable Energy, Sustainability and the Environment, Agricultura, SALSOLA KALI, CIENCIAS AGRÍCOLAS, Ciencias Medioambientales, //purl.org/becyt/ford/4.1 [https], Agricultura, Silvicultura y Pesca, bioclimatic requirements, //purl.org/becyt/ford/4 [https]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 5
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 1
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Average
Average
Average
1
5
Green
gold