Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Geophysic...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Geophysical Research Biogeosciences
Article . 2022 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Using Stable Water Isotope Composition (δ18O and δ2H) to Track the Interannual Responses of Arctic and Tropical Andean Water Bodies to Rising Air Temperatures

Authors: Neal Michelutti; Kathryn E. Hargan; Linda E. Kimpe; John P. Smol; Jules M. Blais;

Using Stable Water Isotope Composition (δ18O and δ2H) to Track the Interannual Responses of Arctic and Tropical Andean Water Bodies to Rising Air Temperatures

Abstract

AbstractLakes in the Arctic and tropical Andes are experiencing some of the largest temperature increases on the planet with coeval marked limnological changes, but little data exist on water balance parameters from these regions. Here, we present a unique data set of water stable isotope composition (δ18O and δ2H) from a suite of 49 water bodies in the Canadian Arctic (Resolute Bay, Cornwallis Island, and Cape Herschel, Ellesmere Island) and the tropical Andes (Cajas National Park, Ecuador) spanning various years from 2009 to 2016. We show that an increase in air temperature over the study period resulted in evaporative enrichment of water isotopes in most Arctic sites highlighting the significance of evaporative losses to small Arctic ponds during the prolonged ice‐free summers now experienced in this part of the world. Exceptions include some Arctic waterbodies that received abundant snowmelt and large, ice‐covered lakes less prone to evaporation. Data from the Andean lakes indicated evaporative effects were minimal due to abundant precipitation. These data, in combination with limnological records and paleolimnological research from each region, provide a holistic view on how freshwater ecosystems are responding to recent warming in climatically sensitive Arctic and Andean environments.

Keywords

Atmospheric Science, Ecology, Paleontology, Soil Science, Forestry, Aquatic Science, Water Science and Technology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Funded by
Related to Research communities
Assessing the socio-economic impact of digitalisation in rural areas