Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ edoc-Server. Open-Ac...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Supporting climate risk management in tropical agriculture with statistical crop modelling

Authors: Laudien, Rahel;

Supporting climate risk management in tropical agriculture with statistical crop modelling

Abstract

Die Anzahl der unterernährten Menschen in der Welt steigt seit 2017 wieder an. Der Klimawandel wird den Druck auf die Landwirtschaft und die Ernährungssicherheit weiter erhöhen, insbesondere für kleinbäuerliche und von Subsistenzwirtschaft geprägte Agrarsysteme in den Tropen. Um die Widerstandsfähigkeit der Ernährungssysteme und die Ernährungssicherheit zu stärken, bedarf es eines Klimarisikomanagements und Klimaanpassung. Dies kann sowohl die Antizipation als auch die Reaktion auf die Auswirkungen der globalen Erwärmung ermöglichen. Eine zentrale Rolle spielen in dieser Hinsicht landwirtschaftliche Modelle. Sie können die Reaktionen von Pflanzen auf Veränderungen in den Klimabedingungen quantifizieren und damit Risiken identifizieren. Diese Dissertation demonstriert anhand dreier in Peru, in Tansania und in Burkina Faso durchgeführten Fallstudien, wie statistische Ertragsmodelle das Klimarisikomanagement und die Anpassung in der tropischen Landwirtschaft unterstützen können. Während die erste Studie zeigt, wie Klimaanpassungsbestrebungen unterstützt werden können, werden in Studie zwei und drei statistische Modelle genutzt, um Ertrags- und Produktionsvorhersagen zu erstellen. Die Ergebnisse können dazu beitragen, Frühwarnsysteme für Ernährungsunsicherheit zu unterstützen. In den drei Veröffentlichungen werden neue Ansätze statistischer Ertragsmodellierung auf verschiedenen räumlichen Ebenen vorgestellt. Ein besonderer Fokus liegt hierbei auf der Weiterentwicklung von bisherigen Ertragsvorhersagen, insbesondere in Bezug auf unabhängige Modellvalidierungen, eine stärkere Berücksichtigung von Wetterextremen und die Übertragbarkeit der Modelle auf andere Regionen. The number of undernourished people in the world has been increasing since 2017. Climate change will further exacerbate pressure on agriculture and food security, particularly for smallholder and subsistence-based farming systems in the tropics. Anticipating and responding to global warming through climate risk management is needed to increase the resilience of food systems and food security. Crop models play an indispensable role in this regard. They allow quantifying crop responses to changes in climatic conditions and thus identify risks. This dissertation demonstrates how statistical crop modelling can inform climate risk management and adaptation in tropical agriculture in the case studies of Peru, Tanzania and Burkina Faso. While the first study shows how statistical crop models can support climate adaptation, studies two and three provide yield and production forecasts. The results can contribute to supporting early warning systems on food insecurity. The three publications present novel approaches of statistical yield modelling at different spatial scales. A particular focus is on further developing existing yield forecasts, especially with regard to independent rigorous model validations, improved consideration of weather extremes, and the transferability of the models to other regions.

Country
Germany
Related Organizations
Subjects by Vocabulary

Dewey Decimal Classification: ddc:630

Keywords

Klimaanpassung, Wetterrisiken, 630 Landwirtschaft und verwandte Bereiche, Klimawandel, Ertragsvorhersage, weather risks, Statistische Ertragsmodellierung, ZB 95000, climate adaptation, food security, Klimarisikomanagement, ZA 57500, Ernährungssicherheit, Tanzania, tropics, climate change, climate risk management, Landwirtschaft, Peru, Burkina Faso, yield forecasting, Tropen, agriculture, statistical crop model

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 131
    download downloads 67
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 131
    views
    67
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
Average
Average
Average
131
67
Related to Research communities
Rural Digital Europe
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.