Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
2,609 Research products, page 1 of 261

  • Rural Digital Europe
  • Publications
  • Research software
  • 2014-2023
  • DE
  • Energy Research

10
arrow_drop_down
Date (most recent)
arrow_drop_down
  • Open Access English
    Authors: 
    Herzfeld, Tobias;
    Publisher: Humboldt-Universität zu Berlin
    Country: Germany

    Klimawandel und Bodendegradation üben Druck auf die Nahrungsmittelproduktion sowie auf die Fähigkeit des Bodens zur Minderung des Klimawandels beizutragen aus. Bodendegradation hat negative Auswirkungen auf die Bodenqualität. Ziel dieser Arbeit ist die Analyse der Effekte von landwirtschaftlich getriebener Bodendegradation, vor allem durch Pflügen und dem Umgang mit Ernterückständen. Es wird ein Überblick über das Thema Bodendegradation gegeben, gefolgt von Erweiterung des globalen Ökosystemmodells Lund-Potsdam-Jena-managed-Land (LPJmL) um eine detaillierte Prozessabbildung von Pflugpraktiken und Effekten von Ernterückständen. Diese ermöglicht die Analyse der Effekten von landwirtschaftlichen Managements auf die Anpassung und Minderung des Klimawandel. Das Modell kann die Effekte von naturerhaltender landwirtschaftlicher Bewirtschaftung (im Englischen bekannt als Conservation Agriculture) auf Kohlenstoffvorräte im Boden und CO2 Emissionen simulieren. Im letzten Teil wird die historische Dynamik der Entwicklung von Bodenkohlenstoff (engl.: Soil Organic Carbon – SOC) und die Effekte von Annahmen zum zukünftigen Management unter unterschiedlichen Klimaszenarien gezeigt. Die Ergebnisse zeigen, dass durch die historische Umwandlung von natürlicher Vegetation zu landwirtschaftlicher Fläche bis zu 215 Pg SOC im Boden verloren gegangen sind. Bis zum Ende des Jahrhunderts könnten weitere 38 Pg SOC zusätzlich verloren gehen, wird die heutige landwirtschaftliche Fläche nicht nachhaltig bewirtschaften. Die Bewirtschaftung mit dem Pflug zeigt einen geringen Einfluss auf die Kohlenstoffvorräte des Bodens, während die Wahl der Behandlung von Ernterückständen erheblich Einfluss hat. Die Rückführung von Ernterückständen hat positive Einflüsse auf Bodenwassergehalt und Ernteproduktivität, mit regionalen Unterschieden. Insgesamt zeigen 46% der heute Landwirtschaftsfläche das Potenzial zur Steigerung des Bodenkohlenstoff, während mindestens 52% Kohlenstoff im Boden verlieren könnten. Climate change and increasing soil degradation put pressure on the global food production systems and the ability of land for climate change mitigation. Additionally, soil degradation has negative implications on soil quality. This thesis analyzes the effects of agricultural-driven global soil degradation, in particular tillage and residue management. At first, a review the state of knowledge on global soil degradation is provided. Soil organic carbon (SOC) decline is one of the major forms of soil degradation on cropland and a useful indicator of the status of soil degradation. Secondly, to study the effects of different pathways of agricultural management on biophysical and biogeochemical flows, the global ecosystem model Lund-Potsdam-Jena managed Land (LPJmL) is extended by a detailed representation of tillage practices and residue management. This improvement of LPJmL allows for the analysis of management-related effects on agricultural mitigation of climate change adaption and the reduction of environmental impacts. The model can simulate the effects of conservation practices on SOC stocks and CO2 emissions. And third, SOC development and the effects of different management assumptions under climate change is analyzed. This shows that approximately 215 Pg SOC was lost due to the historical conversion of natural land to cropland and up to 38 Pg SOC could be additionally lost on already existing cropland until the end of the century if cropland is not managed sustainably. The type of tillage system has small effects on the SOC stocks, while the choice of crop residue treatment is shown to be the main driver governing SOC development. Returning residues to the soil slows the decline of SOC, and positively affects soil moisture and crop productivity, with regional differences. In total, up to 46% of todays’ cropland shows the potential for SOC increase, while at least 52% of cropland today will undergo further SOC loss as a form of soil degradation.

  • Open Access English
    Authors: 
    Zoe Mayer; Andres Epperlein; Elena Vollmer; Rebekka Volk; Frank Schultmann;
    Publisher: Multidisciplinary Digital Publishing Institute
    Country: Germany

    Thermography for building audits is commonly carried out by means of terrestrial recording processes with static cameras. The implementation of drones to automatically acquire images from various perspectives can speed up and facilitate the procedure but requires higher recording distances, utilizes changing recording angles and has to contend with the effects of movement during image capture. This study investigates the influence of different drone settings on the quality of thermographic images for building audits in comparison to ground-based acquisition. To this end, several buildings are photographically captured via unmanned aerial vehicle and classical terrestrial means to generate a dataset of 968 images in total. These are analyzed and compared according to five quality criteria that are explicitly chosen for this study to establish best-practice rules for thermal image acquisition. We discover that flight speeds of up to 5 m/s have no visible effects on the image quality. The combination of smaller distances (22 m above a building) and a 45° camera angle are found to allow for both the qualitative and quantitative analysis of rooftops as well as a qualitative screening of building façades. Greater distances of 42 m between camera and building may expedite the acquisition procedure for larger-scaled district coverage but cannot be relied upon for thermal analyses beyond qualitative studies.

  • Open Access English
    Authors: 
    Maja Trumic; Cosimo Della Santina; Kosta Jovanovic; Adriano Fagiolini;
    Countries: Germany, Italy, Netherlands

    This letter investigates the stability properties of the soft inverted pendulum with affine curvature - a template model for nonlinear control of underactuated soft robots. We look at how changes in physical parameters affect stability and equilibrium. We give conditions under which zero dynamics corresponding to a collocated choice of the output is (locally or globally) stable or unstable. We leverage these results to design a switching controller that stabilizes a class of nonlinear equilibria of the pendulum, which can drive the system from one equilibrium to another.

  • Open Access English
    Authors: 
    Drebenstedt, Ireen;
    Publisher: Universität Hohenheim
    Country: Germany

    Climate change poses a challenge for the production of crops in the twenty-first century due to alterations in environmental conditions. In Central Europe, temperature will be increased and precipitation pattern will be altered, thereby influencing soil moisture content, physiological plant processes and crop development in agricultural areas, with impacts on crop yield and the chemical composition of seeds. Warming and drought often occur simultaneously. The combination of multiple abiotic stresses can be synergistic, leading to additive negative effects on crop productivity. To date, little information is available from multi-factor experiments analyzing interactive effects of warming and reduced precipitation in an arable field. In addition, one major issue of studying climate change effects on crop development in the long-term is that weather conditions can vary strongly between years, e.g., with hot and dry summers in comparison to cool and wet ones, which directly affects soil moisture content and indirectly affects crop development. Thus, considering yearly weather conditions seems to be important for the analyses of climate change effects on aboveground biomass and harvestable yield of crops. The aim of the present work was to identify single and combined effects of soil warming (+2.5 °C), reduced summer precipitation amount (-25%), and precipitation frequency (-50%) on crop development, ecophysiology, aboveground biomass and yield as well as on yield quality of wheat, barley, and oilseed rape grown in the Hohenheim Climate Change (HoCC) field experiment. This thesis presents novel results from the HoCC experiment in the long-term perspective. Thus, aboveground biomass and yield data (2009-2018) of the three crops were analyzed with regard to their inter-annual variability, including annual fluctuations in weather conditions.This thesis consists of three publications. In the first and second publication a field experiment within the scope of the HoCC experiment was conducted with spring barley (Hordeum vulgare L. cv. RGT Planet) and winter oilseed rape (Brassica napus L. cv. Mercedes) in 2016 and 2017. The objective was to investigate the impacts of soil warming, altered precipitation pattern and their interactions on biomass production and crop yield. In addition, it was examined, whether the simulated climate changes affecting barley photosynthesis and the seed quality compounds of oilseed rape. In the third publication, long-term plant productivity data of wheat, barley, and oilseed rape were evaluated, including aboveground biomass and yield data from the field experiment in 2018 with winter wheat (Triticum aestivum L. cv. Rebell). Der Klimawandel stellt aufgrund veränderter Umweltbedingungen eine Herausforderung für den Anbau von landwirtschaftlichen Nutzpflanzen im 21. Jahrhundert dar. In Mitteleuropa steigt die Temperatur an und die Niederschlagsmuster verändern sich, wodurch die Bodenfeuchte, die physiologischen Pflanzenprozesse und die Pflanzenentwicklung in landwirtschaftlichen Gebieten beeinflusst werden. Dies wirkt sich auf den Ernteertrag und die chemische Zusammensetzung der Erträge aus. Häufig treten Erwärmung und Trockenheit gleichzeitig auf. Dabei kann sich das Vorkommen mehrerer abiotischer Stressoren synergistisch auswirken und zu additiv negativen Effekten auf die Pflanzenproduktivität führen. Bisher liegen nur wenige Informationen aus multifaktoriellen Experimenten vor, welche die Wechselwirkungen von Erwärmung und Trockenheit in einem landwirtschaftlichen Feld untersuchen. Darüber hinaus ist es wichtig die Auswirkungen des Klimawandels auf die Entwicklung von Nutzpflanzen in Langzeitstudien zu untersuchen, da die Wetterbedingungen zwischen den Jahren stark variieren können, z. B. mit heißen und trockenen Sommern im Vergleich zu kühlen und nassen, mit direkter Auswirkung auf die Bodenfeuchte und indirekter Wirkung auf die Entwicklung der Pflanzen. Demzufolge scheint eine Berücksichtigung der jährlichen Wetterbedingungen wichtig zu sein, wenn die Folgen des Klimawandels auf die oberirdische Biomasse und den Ernteertrag von landwirtschaftlichen Nutzpflanzen abgeschätzt werden. Das Ziel der vorliegenden Arbeit war es im Rahmen des Hohenheim Climate Change (HoCC) Feld-Experimentes die Folgen der drei Faktoren Bodenerwärmung (+2,5°C), reduzierter Sommer Niederschlagsmenge (-25 %) und Niederschlagshäufigkeit (-50 %) einzeln oder in Kombination auf die Parameter Pflanzenentwicklung, Ökophysiologie, oberirdische Biomasse, Ertrag und Ertragsqualität von Weizen, Gerste und Raps zu untersuchen. In dieser Arbeit werden neue Ergebnisse aus dem Langzeit - HoCC-Experiment präsentiert. Dazu wurden Daten von 2009-2018 zu oberirdischer Biomasse und Ertrag der drei Kulturen hinsichtlich ihrer zwischenjährlichen Variabilität analysiert und jährliche Schwankungen in den Witterungsbedingungen berücksichtigt. Die Dissertation besteht aus drei Publikationen. In der ersten und zweiten Veröffentlichung wurde im Rahmen des HoCC Experimentes in den Jahren 2016 und 2017 ein Feldversuch mit den Nutzpflanzen Sommergerste (Hordeum vulgare L. cv. RGT Planet) und Winterraps (Brassica napus L. cv. Mercedes) durchgeführt. Ziel war es, die Auswirkungen einer Bodenerwärmung, veränderten Niederschlagsmustern und deren Wechselwirkungen auf die Biomasseproduktion und den Ernteertrag zu untersuchen. Darüber hinaus wurde untersucht, ob sich die simulierten Klimaänderungen auf die Photosynthese von Gerste sowie auf die Inhaltsstoffe von Rapssamen auswirken. In der dritten Veröffentlichung wurden Langzeit - Produktivitätsdaten von Weizen, Gerste, und Raps ausgewertet, darunter oberirdische Biomasse und Ertragsdaten aus dem HoCC Feldversuch von 2018 mit Winterweizen (Triticum aestivum L. cv. Rebell).

  • Open Access English
    Authors: 
    Guzman Bustamante, Ivan;
    Publisher: Universität Hohenheim
    Country: Germany

    Agricultural activities are responsible for a substantial share of anthropogenic greenhouse gases. At the same time, agricultural production must feed a growing world population under a changing climate. In the case of wheat, the use of nitrogen (N) fertilizers is needed in order to insure grain yield and quality. Nevertheless, its use is associated with reactive N losses, which are detrimental for the environment and human health. Among the gaseous N species emitted after N fertilization we find nitrous oxide (N2O), a potent greenhouse gas, and ammonia (NH3) that after its deposition can be oxidized to N2O. Chemical compounds such as nitrification and urease inhibitors (NIs and UIs, respectively) are a useful tool, able to raise the fertilizer nitrogen use efficiency, by retarding the nitrification of ammonium based fertilizer in the case of NIs and by retarding the hydrolysis of urea in the case of UIs. A side benefit of the use of NIs is the reduction of N2O emissions. The use of UIs reduces the NH3 volatilization. One of the most used NIs in Europe is 3,4-dimethylpyrazol phosphate (DMPP) which can be applied with ammonium sulfate nitrate (ASN). The relatively new NI, 3,4-dimethylpyrazol succinic acid (DMPSA), acts similarly to DMPP but has a different time of action and can be applied to several fertilizers, unlike DMPP. N-(n-butyl) thiophosphoric triamide (NBPT) is an effective UI that provenly reduces NH3 volatilization by inhibiting the urease enzyme. In a two-year field experiment with winter wheat several fertilizer strategies were tested, including splitting strategies, use of NIs and reduction of N amount. Reducing N amount reduces the amount of soil mineral N, which is the substrate for N2O producing microbiological processes, nitrification and denitrification. Splitting of N fertilizer might reduce soil mineral N as well because N fertilizer applications are better suited to the physiological needs of the wheat plants. Applying NIs in splitting schemes may further mitigate emissions. The relationship between N amount and N2O losses in a wheat production system was investigated by applying lower and higher N amounts than the recommended N application rate. Use of DMPP was able to reduce N2O emissions in both years, not only on an annual basis (by 21 %: 3.1 vs 2.5 kg N2O-N ha-1 a-1 average for both years) but also during winter, when up to 18 % of total annual emissions occurred. A change of the soil microbial community due to DMPP could be the reason for the reduction of winter emissions 8 to 12 months after DMPP application. An economic assessment of N fertilizer amount showed that DMPP applied with suboptimal N fertilizer amounts can maintain yield and at the same time decrease yield scaled N2O emissions compared to an optimal N fertilizer rate without NI. Using CAN together with the NI DMPSA reduced N2O emissions only during the vegetation period. On an annual basis, DMPSA did not significantly reduce N2O emissions. Because DMPSA and DMPP were applied with different N fertilizers with different ammonium and nitrate shares, a direct comparison between these two NIs cannot be made. A traditional threefold split fertilization did not reduce annual emissions compared to a single application of ASN or CAN. Nevertheless, the use of DMPP in twofold split applications reduced annual emissions significantly by 33 % and increased protein content by 1.6 %. Because N2O flux peaks were not as high as expected after N fertilization during the first year, a short experiment investigating the effect of soil moisture, N and C application on N2O fluxes was conducted. A C limitation of the field was found, which explained high N2O emission events when C was available, e.g. after rewetting of dry soil and incorporation of straw after harvest. In this context we tested the removal of wheat straw – which should reduce the organic substrate supply for denitrifiers – as a possible mitigation strategy. Nevertheless, the removal of straw had no effect on N2O emissions. Furthermore, the effect of DMPP on microorganisms was studied in an incubation experiment: the copy number of bacterial amoA genes (nitrifiers) was lowered by the use of DMPP, while the number of archaeal amoA genes was increased by DMPP. Gene copy number of denitrifiers was unaffected by DMPP, nevertheless, soil respiration was reduced when DMPP was applied. It seems as DMPP has an inhibiting effect on heterotrophic organisms, nevertheless, the investigated variables did not support this hypothesis, so that further investigation is needed. The effect of NBPT and straw residues on NH3 and N2O emissions was studied in a two-week incubation experiment with a slightly alkaline soil. NBPT reduced NH3 volatilization and N2O fluxes from urea fertilization almost completely. Incorporation of straw residues significantly increased N2O emissions. In a further four-week incubation experiment, the effect of NBPT in two concentrations and DMPP was studied. A higher NBPT concentration as the recommended rate, reduced NH3 emissions by 53 %; DMPP on the other hand increased NH3 volatilization by 70 %. Regarding N2O, DMPP reduced emissions to the same level as the unfertilized control; NBPT only shifted the emission peak so that by the end of the experiment no difference in the cumulative N2O emission was found between urea and NBPT treatments. These results show that UI can lead to a reduction of N2O emissions, but the ammonium formed by the urea hydrolysis should be used by crops, otherwise it serves as a substrate for N2O production in soils. In the final incubation experiment, the combined application of a NI (DMPSA) and a UI (NBPT) was studied. Lower concentrations than the recommended doses were applied in order to assess synergistic effects. The combined application of DMPSA and NBPT did not lead to synergistic effects in the analyzed variables (soil urea amount, soil mineral N, ammonia volatilization, soil respiration and N2O emission). The higher the NBPT concentration, the slower urea was hydrolyzed and the higher the reduction in NH3 volatilization. A third of DMPSA application rate was enough to reduce N2O emissions; however, the use of NI increased NH3 losses. Our results highlight the importance of annual datasets when assessing mitigation strategies for N2O. For wheat production, a reduction of the N fertilizer amount when a NI is used should be taken into consideration. When elite wheat cultivars are grown split application with NI fertilizers could ensure high protein content and simultaneously reduce N2O emission. Urea fertilizer should be applied with NI and UI so that NH3 volatilization and N2O emission is reduced. Nevertheless, long-term effects of these compounds on soil microbiology must be monitored to avoid unseen ecotoxicological effects. Since some of these compounds or their metabolites might be absorbed by plants and end up in food and feed more research is needed to protect consumers. Landwirtschaftliche Aktivitäten sind für einen erheblichen Teil der anthropogenen Treibhausgase verantwortlich. Gleichzeitig muss die landwirtschaftliche Produktion eine wachsende Weltbevölkerung in einem sich verändernden Klima ernähren. Bei Weizen ist der Einsatz von Stickstoffdünger (N) erforderlich, um den Ertrag und die Qualität des Getreides zu sichern. Der Einsatz von Stickstoffdüngern ist jedoch mit reaktiven N-Verlusten verbunden, die sich nachteilig auf die Umwelt und die menschliche Gesundheit auswirken. Zu den gasförmigen N-Spezies, die nach der N-Düngung freigesetzt werden, gehören Distickstoffmonooxid (N2O), ein starkes Treibhausgas, und Ammoniak (NH3), das nach seiner Deposition zu N2O oxidiert werden kann. Chemische Substanzen wie Nitrifikations- und Ureaseinhibitoren (NI bzw. UI) sind ein wirksames Mittel, um die N-Nutzungseffizienz von Düngemitteln zu erhöhen, indem sie die Nitrifikation von Ammonium-basierten Düngemitteln - im Fall von NI - und die Harnstoffhydrolyse - im Fall von UI - verzögern. Ein positiver Nebeneffekt der Anwendung von NI ist die Minderung der N2O-Emissionen. Durch den Einsatz von UI wird die NH3-Volatilisierung reduziert. Einer der in Europa am häufigsten verwendeten NI ist 3,4-Dimethylpyrazolphosphat (DMPP), das zusammen mit Ammonsulfatsalpeter (ASS) eingesetzt werden kann. Der relativ neue NI, 3,4-Dimethylpyrazolbernsteinsäure (DMPSA), wirkt ähnlich wie DMPP, hat aber einen späteren Wirkzeitpunkt und kann im Gegensatz zu DMPP mit mehreren Düngemitteln angewendet werden. N-(n-Butyl)-thiophosphorsäuretriamid (NBPT) ist ein wirksamer UI, der nachweislich die NH3-Volatilisierung durch Hemmung des Enzyms Urease reduziert. In einem zweijährigen Feldversuch mit Winterweizen wurden verschiedene Düngestrategien getestet, darunter Splitting-Strategien, die Verwendung von NI und die Reduzierung der N-Menge. Die Verringerung der N-Menge reduziert die mineralischen N-Gehalte in Böden, die das Substrat für die mikrobiellen N2O-Quellprozesse Nitrifikation und Denitrifikation darstellen. N-Splitting kann die mineralischen N-Gehalte in Böden ebenfalls verringern, da die N-Düngung besser auf die physiologischen Bedürfnisse der Weizenpflanzen abgestimmt ist. Die Anwendung von NI-Düngern im Rahmen von Splitting-Strategien kann die Emissionen weiter verringern. Der Zusammenhang zwischen der N-Menge und den N2O-Verlusten in einem Weizenanbausystem wurde untersucht, indem niedrigere und höhere N-Mengen als die empfohlene N-Menge ausgebracht wurden. Der Einsatz von DMPP konnte die N2O-Emissionen in beiden Jahren nicht nur auf Jahresbasis reduzieren (um 21 %: 3,1 gegenüber 2,5 kg N2O-N ha-1 a-1 im Durchschnitt beider Jahre), sondern auch im Winter, in dem bis zu 18 % der gesamten Jahresemissionen auftraten. Eine Veränderung der mikrobiellen Bodengemeinschaft durch DMPP könnte der Grund für den Rückgang der N2O-Emissionen 8 bis 12 Monate nach DMPP-Anwendung sein. Eine wirtschaftliche Bewertung der N Düngermenge zeigte, dass DMPP mit suboptimalen N-Düngermengen ausgebracht, im Vergleich mit einer optimalen N-Düngung ohne NI den Ertrag aufrechterhalten und gleichzeitig die ertragsbezogenen N2O-Emissionen verringern kann. Der Einsatz von Kalkammonsalpeter (KAS) zusammen mit dem NI DMPSA reduzierte die N2O-Emissionen nur während der Vegetationsperiode. Auf Jahresbasis reduzierte DMPSA die N2O-Emissionen nicht signifikant. Da DMPSA und DMPP mit unterschiedlichen N-Düngemitteln ausgebracht wurden, die unterschiedlichen Ammonium- und Nitratanteilen aufwiesen, ist ein direkter Vergleich zwischen diesen beiden NIs nicht möglich. Eine herkömmliche dreifach gesplittete Applikation verringerte die jährlichen Emissionen im Vergleich zu einer einmaligen Anwendung von ASS oder KAS nicht. Die Verwendung von DMPP in einer zweifachen Splitapplikation reduzierte die jährlichen Emissionen jedoch deutlich um 33 % und erhöhte den Proteingehalt des Weizenkorns um 1,6 %. Da die Höchstwerte der N2O-Flüsse nach der N-Düngung im ersten Jahr vergleichsweise gering waren, wurde ein Kurzexperiment durchgeführt, in dem die Auswirkungen von Bodenfeuchte, N- und C-Verfügbarkeit auf die N2O-Flüsse untersucht wurden. Es wurde eine C-Limitierung des Bodens festgestellt, was die hohe N2O-Emissionen erklärte, wenn C mikrobiell verfügbar war, z. B. nach Wiederbefeuchtung von trockenem Boden und nach Einarbeitung von Stroh nach der Ernte. In diesem Zusammenhang wurde die Abfuhr von Weizenstroh – das das organische Substratangebot für Denitrifikanten reduzieren sollte – als eine mögliche Minderungsstrategie getestet, sie hatte jedoch keine Auswirkungen auf die N2O-Emissionen. Darüber hinaus wurde die Wirkung von DMPP auf die mikrobielle Gemeinschaft in einem Inkubationsversuch untersucht: Die Kopienzahl der bakteriellen amoA-Gene (Nitrifikanten) wurde durch den Einsatz von DMPP verringert, während die Zahl der amoA-Gene von Archaeen durch DMPP erhöht wurde. Die Anzahl der Genkopien von Denitrifikanten wurde durch DMPP nicht beeinflusst, jedoch wurde die Bodenatmung durch DMPP verringert. Es ist anzunehmen, dass DMPP eine hemmende Wirkung auf heterotrophe Organismen hat, jedoch haben die untersuchten Variablen diese Hypothese nicht bestätigt, so dass weitere Untersuchungen erforderlich sind. Die Wirkung von NBPT und Strohresten auf die Emission von NH3 und N2O wurde in einem zweiwöchigen Inkubationsexperiment mit einem Boden mit leicht alkalischen pH-Wert untersucht. NBPT reduzierte die NH3-Volatilisierung und N2O-Flüsse aus der Harnstoffdüngung fast vollständig. Die Einarbeitung von Strohrückständen erhöhte die N2O-Emissionen erheblich. In einem weiteren vierwöchigen Inkubationsversuch wurde die Wirkung von zwei unterschiedlichen NBPT-Konzentrationen sowie von DMPP untersucht. Eine höhere NBPT-Konzentration als die empfohlene Rate reduzierte die NH3-Emissionen um 53 %; DMPP hingegen erhöhte die NH3-Volatilisierung um 70 %. In Bezug auf N2O reduzierte DMPP die Emissionen auf das gleiche Niveau wie in der ungedüngten Kontrolle; NBPT verschob lediglich die Emissionsspitze, so dass am Ende des Versuchs kein Unterschied in der kumulativen N2O-Emission zwischen den Behandlungen mit Harnstoff und NBPT festgestellt wurde. Diese Ergebnisse zeigen, dass UI zu einer Verringerung der N2O-Emissionen führen kann, aber das nach Harnstoffhydrolyse gebildete Ammonium von Kulturpflanzen genutzt werden muss, da es sonst als Substrat für die N2O-Bildung in Böden genutzt wird. Im letzten Inkubationsversuch wurde die kombinierte Anwendung eines NI (DMPSA) und eines UI (NBPT) untersucht. Es wurden niedrigere Konzentrationen als die empfohlenen Dosen verwendet, um synergistische Effekte zu evaluieren. Die kombinierte Anwendung von DMPSA und NBPT führte nicht zu synergistischen Effekten (Harnstoffmenge und mineralischer Stickstoff im Boden, NH3-Volatilisierung, Bodenatmung und N2O-Emission). Je höher die NBPT-Konzentration, desto langsamer wurde der Harnstoff hydrolysiert und desto stärker wurde die NH3-Volatilisierung reduziert. Ein Drittel der empfohlenen DMPSA-Aufwandsmenge reichte aus, um die N2O-Emissionen zu verringern; die Verwendung von NI erhöhte jedoch die NH3-Verluste. Die Ergebnisse unterstreichen die Bedeutung ganzjähriger Datensätze bei der Bewertung von Minderungsstrategien für N2O. Beim Weizenanbau sollte eine Verringerung der N-Düngermenge beim Einsatz von NI in Betracht gezogen werden. Beim Anbau von Elite-Weizensorten kann eine gesplittete N-Gabe mit NI einen hohen Proteingehalt bei gleichzeitiger Minderung der N2O-Emission gewährleisten. Harnstoffdünger sollte mit NI und UI ausgebracht werden, so dass die NH3-Volatilisierung und die N2O-Emission verringert werden. Dennoch müssen die langfristigen Auswirkungen dieser Verbindungen auf die mikrobielle Gesellschaft von Böden untersucht werden, um unvorhergesehene ökotoxikologische Auswirkungen zu vermeiden. Da einige dieser Verbindungen oder ihre Metaboliten von Pflanzen aufgenommen werden und in Lebens- und Futtermittel gelangen könnten, ist weitere Forschung zum Schutz der Verbraucher erforderlich.

  • Publication . 2023
    English
    Authors: 
    Licka, Maria-Theresa; Schweikert, Mario;
    Publisher: Physikalisch-Technische Bundesanstalt (PTB)
    Country: Germany

    This project enables early grapevine leaf disease identification on grape leaves by cell phone images, thereby allowing a precise usage of pesticides. The application is based on artificial intelligence (AI) which is trained to detect and differentiate the most common diseases. A continuous update of the extent and geographical location of disease spreading gives further valuable information to the winemakers using the application. In der Jungen Wissenschaft werden Forschungsarbeiten von Schüler/innen, die selbstständig, z.B. in einer Schule oder einem Schülerforschungszentrum, durchgeführt wurden, veröffentlicht. Junge Wissenschaft. Paper 10/2022

  • Open Access English
    Authors: 
    Laudien, Rahel;
    Publisher: Humboldt-Universität zu Berlin
    Country: Germany

    Die Anzahl der unterernährten Menschen in der Welt steigt seit 2017 wieder an. Der Klimawandel wird den Druck auf die Landwirtschaft und die Ernährungssicherheit weiter erhöhen, insbesondere für kleinbäuerliche und von Subsistenzwirtschaft geprägte Agrarsysteme in den Tropen. Um die Widerstandsfähigkeit der Ernährungssysteme und die Ernährungssicherheit zu stärken, bedarf es eines Klimarisikomanagements und Klimaanpassung. Dies kann sowohl die Antizipation als auch die Reaktion auf die Auswirkungen der globalen Erwärmung ermöglichen. Eine zentrale Rolle spielen in dieser Hinsicht landwirtschaftliche Modelle. Sie können die Reaktionen von Pflanzen auf Veränderungen in den Klimabedingungen quantifizieren und damit Risiken identifizieren. Diese Dissertation demonstriert anhand dreier in Peru, in Tansania und in Burkina Faso durchgeführten Fallstudien, wie statistische Ertragsmodelle das Klimarisikomanagement und die Anpassung in der tropischen Landwirtschaft unterstützen können. Während die erste Studie zeigt, wie Klimaanpassungsbestrebungen unterstützt werden können, werden in Studie zwei und drei statistische Modelle genutzt, um Ertrags- und Produktionsvorhersagen zu erstellen. Die Ergebnisse können dazu beitragen, Frühwarnsysteme für Ernährungsunsicherheit zu unterstützen. In den drei Veröffentlichungen werden neue Ansätze statistischer Ertragsmodellierung auf verschiedenen räumlichen Ebenen vorgestellt. Ein besonderer Fokus liegt hierbei auf der Weiterentwicklung von bisherigen Ertragsvorhersagen, insbesondere in Bezug auf unabhängige Modellvalidierungen, eine stärkere Berücksichtigung von Wetterextremen und die Übertragbarkeit der Modelle auf andere Regionen. The number of undernourished people in the world has been increasing since 2017. Climate change will further exacerbate pressure on agriculture and food security, particularly for smallholder and subsistence-based farming systems in the tropics. Anticipating and responding to global warming through climate risk management is needed to increase the resilience of food systems and food security. Crop models play an indispensable role in this regard. They allow quantifying crop responses to changes in climatic conditions and thus identify risks. This dissertation demonstrates how statistical crop modelling can inform climate risk management and adaptation in tropical agriculture in the case studies of Peru, Tanzania and Burkina Faso. While the first study shows how statistical crop models can support climate adaptation, studies two and three provide yield and production forecasts. The results can contribute to supporting early warning systems on food insecurity. The three publications present novel approaches of statistical yield modelling at different spatial scales. A particular focus is on further developing existing yield forecasts, especially with regard to independent rigorous model validations, improved consideration of weather extremes, and the transferability of the models to other regions.

  • Open Access English
    Authors: 
    Musse Tesfaye; Ashenafi Manaye; Berihu Tesfamariam; Zenebe Mekonnen; Shibire Bekele Eshetu; Katharina Löhr; Stefan Sieber;
    Country: Germany

    Despite their ecological importance, dry forests’ contribution to climate change adaptation is often neglected. Hence, this study was initiated to assess the socioeconomic contribution of dry forests to climate change adaptation in Tigray Region, Ethiopia. A mixed quantitative and qualitative research design was used to examine the role of dry forests in climate change adaptation. Household questionnaire survey, key informants, and a focus group discussion were used to collect data. The results indicated that 94% of all households visited a dry forest at least once a month to access the forest and forest products. While the dry forest income level varied significantly (p < 0.05), the overall dry forest income level contributed to 16.8% of the total household income. Dry forest income enabled the reduction of the area between the line of equality and the Lorenz curve by 21% in dry evergreen Afromontane Forest users, by 3.02% in Combretum–Terminalia woodland users, and by 3% in Acacia–Commiphora woodland users. Gender, occupation, wealth status, and distance from the forest to their homes are all factors that significantly affected Combretum–Terminalia woodland users’ income level. Among Acacia–Commiphora woodland users, the respondents’ age influenced the dry forest income level, whereas, among dry evergreen Afromontane Forest users, the family size of the household influenced the dry forest income level. The findings of this study could help policy makers understand the crucial role of dry forest income in the livelihood of the community and in climate change adaptation. Policymakers could reduce the pressure on dry forests by introducing policies that recognize the role of dry forest income in reducing poverty and income inequality and by establishing farmer cooperation in commercializing the non-timber forest products which support the long-term coping and adaptation strategy. Further research is needed to understand the increasing role of dry forest products in climate change adaptation over time and its contribution to the national economy at large. Ethiopian Environment and Forestry Research Institute Open Access Fund of the Leibniz Association Peer Reviewed

  • Closed Access
    Authors: 
    Mendes, Jéssica Alves Justo; Carvalho, Nubia Gabriela Pereira; Mourarias, Murilo Neves; Careta, Catarina Barbosa; Vânia Gomes Zuin, Gomes Zuin; Gerolamo, Mateus Cecílio;
    Publisher: Elsevier BV
    Country: Germany

    Agribusinesses need to answer to societal growing concerns regarding the use of natural resources. In this context, the digital technologies described by Industry 4.0 appear as allies in the optimization of agribusiness. The use of these technologies is closely related to digital transformation, leading to this work's goal: to analyze the dimensions of Digital Transformation (DT) in the Modern Agricultural (MA) context. The methodology of this study was divided into three main parts. Firstly, a Systematic Literature Review (SLR) was performed with the help of the SciMAT® software. Then, a content analysis was performed using a semantic technique to define the dimensions a posteriori. Finally, a Latent Dirichlet Allocation (LDA) model using the RStudio® software was made to validate the results found in the semantic analysis. To the best of our knowledge, there are only five studies that define dimensions of DT in MA, however none of them used a robust SLR with content analysis. Two of these studies did empirical researches with specialists to define the dimensions, and the other three defined specifics dimensions only a priori. Our study brings as an innovation the definition of the dimensions a posteriori through the SLR. Additionally, no studies that validated the results using a LDA model were found. As a result of our studies, we have identified eight dimensions: Economical, Government, Sustainability; Infrastructure, Technological, Cooperation, Change, and People/Knowledge/Skills. The first three dimensions are more influenced by external factors, while external and internal factors influence the following three, and finally, the last two are more affected by internal factors. For each set of the dimensions listed, the main pillars/drivers/motivators and the main barriers/challenges/difficulties were identified. For example, for the mixed dimension, the first set can be the creation of regional centers that broadcast digital technology content. Regarding the second set, we can cite the difficulty in transforming data into useful information for the same dimension. The results serve as a foundation for both practical business actions and the academic field. They presented a robust theoretical basis for developing guidelines for agricultural management (of farms and other related startups and companies) and public policies to encourage the adoption and implementation of technological resources guided by sustainable development goals. The impacts can be viewed as: reduced production through sustainable and responsible production, assistance in the conscious and sustainable use of water resources, and sustainable actions to mitigate climate change. In conclusion, we highlight that the environment in which the framework will be applied should influence the emphasis given to each set of dimensions. For instance, legislators that seek to develop policies for DT in MA should pay greater attention to the external dimensions. In contrast, farmers that seek to implement DT should be more focused on the internal dimensions.

  • Publication . Doctoral thesis . 2022
    Open Access English
    Authors: 
    Von Albedyll, Luisa;
    Publisher: Universität Bremen
    Country: Germany

    The Arctic Ocean is undergoing a major transition from a year-round sea ice cover to ice-free summers with global consequences. Sea ice thickness is at the center of the ongoing changes because the thickness regulates key processes of the Arctic climate system and in the last six decades, the mean thickness has more than halved. With the most scientific attention on the increased melting and delayed freezing of Arctic sea ice, dynamic thickness change caused by sea ice deformation has remained less studied. Dynamic thickness change alters the sea ice thickness through colliding floes that raft or form pressure ridges or floes breaking apart resulting in leads. Because sea ice grows faster in open water and under thin ice, new ice formation is enhanced in those leads compared to the surrounding ice during the growth season. Because thinner ice is easier to break and move, the ongoing thinning of Arctic sea ice may result in more ridges and leads, which, in turn, could increase ice thickness in winter. However, our limited quantitative understanding of dynamic thickness change has hampered any robust prediction if and to which extent such increased dynamic thickening in winter could mitigate summer thinning in the warming Arctic. To address this gap, we need more robust estimates of the current magnitude as well as a better understanding and representation of the different processes in state-of-the-art sea ice models. Thus, the overarching goal of this thesis is to resolve and quantify dynamic thickness change and to link it to the corresponding sea ice deformation. I focus on the freezing period addressing the following research questions: (1) How large is the dynamic contribution to the mean sea ice thickness in different dynamic regimes? (2) How is deformation shaping the ice thickness distribution? (3) How can high-resolution microwave synthetic aperture radar (SAR) satellite data be used to estimate dynamic thickness change? I answer them in two regional case studies: a unique month-long deformation event during the closing of a polynya north of Greenland and in the Transpolar Drift along the drift track of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The combination of available high-resolution electromagnetic (EM) induction sounding ice thickness data and high-resolution deformation data offer unique research opportunities to study the highly localized and intermittent dynamic thickness changes. My results show that dynamic thickness change plays an important role in both convergent and divergent drift regimes. Studying the polynya closing event reveals that convergence can locally double the thickness of young, thin (<1 m) ice and restore the mean thickness of 2 m of the surrounding multi-year ice within one month. In more divergent regimes like the Transpolar Drift, new ice formation in leads contributes 30% to the sea ice mass balance. There are indicators that this fraction may increase in a more seasonal Arctic sea ice cover. Besides the mean changes, I show how deformation shapes the ice thickness distribution (ITD) with a particular focus on the transfer of observational results into modeling concepts. I identify the ice that participates in ridging, show that the current ridging parameterization in state-of-the-art models is not able to reproduce the observed changes in the shape of the ITD, and suggest an updated parameterization that relates the shape of the ITD proportionally to the observed deformation. Lastly, I demonstrate that SAR-derived deformation can successfully be used to describe sea ice dynamics and to estimate the dynamic contribution to the ice thickness on regional scales. In conclusion, this dissertation substantially advances our understanding of dynamic thickness change with robust and quantitative estimates. The high-resolution EM ice thickness data with simultaneously collected high-resolution deformation data provide an excellent opportunity to deepen our process understanding and to evaluate and improve the modeling of the dynamic processes shaping the ITD. With the increasing availability of SAR data in the Arctic and the presented deformation datasets and methods, new opportunities are opening up to derive dynamic thickness change on Arctic-wide scales and to study the temporal trends in dynamic thickness change over the last decade.

Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Include:
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
2,609 Research products, page 1 of 261
  • Open Access English
    Authors: 
    Herzfeld, Tobias;
    Publisher: Humboldt-Universität zu Berlin
    Country: Germany

    Klimawandel und Bodendegradation üben Druck auf die Nahrungsmittelproduktion sowie auf die Fähigkeit des Bodens zur Minderung des Klimawandels beizutragen aus. Bodendegradation hat negative Auswirkungen auf die Bodenqualität. Ziel dieser Arbeit ist die Analyse der Effekte von landwirtschaftlich getriebener Bodendegradation, vor allem durch Pflügen und dem Umgang mit Ernterückständen. Es wird ein Überblick über das Thema Bodendegradation gegeben, gefolgt von Erweiterung des globalen Ökosystemmodells Lund-Potsdam-Jena-managed-Land (LPJmL) um eine detaillierte Prozessabbildung von Pflugpraktiken und Effekten von Ernterückständen. Diese ermöglicht die Analyse der Effekten von landwirtschaftlichen Managements auf die Anpassung und Minderung des Klimawandel. Das Modell kann die Effekte von naturerhaltender landwirtschaftlicher Bewirtschaftung (im Englischen bekannt als Conservation Agriculture) auf Kohlenstoffvorräte im Boden und CO2 Emissionen simulieren. Im letzten Teil wird die historische Dynamik der Entwicklung von Bodenkohlenstoff (engl.: Soil Organic Carbon – SOC) und die Effekte von Annahmen zum zukünftigen Management unter unterschiedlichen Klimaszenarien gezeigt. Die Ergebnisse zeigen, dass durch die historische Umwandlung von natürlicher Vegetation zu landwirtschaftlicher Fläche bis zu 215 Pg SOC im Boden verloren gegangen sind. Bis zum Ende des Jahrhunderts könnten weitere 38 Pg SOC zusätzlich verloren gehen, wird die heutige landwirtschaftliche Fläche nicht nachhaltig bewirtschaften. Die Bewirtschaftung mit dem Pflug zeigt einen geringen Einfluss auf die Kohlenstoffvorräte des Bodens, während die Wahl der Behandlung von Ernterückständen erheblich Einfluss hat. Die Rückführung von Ernterückständen hat positive Einflüsse auf Bodenwassergehalt und Ernteproduktivität, mit regionalen Unterschieden. Insgesamt zeigen 46% der heute Landwirtschaftsfläche das Potenzial zur Steigerung des Bodenkohlenstoff, während mindestens 52% Kohlenstoff im Boden verlieren könnten. Climate change and increasing soil degradation put pressure on the global food production systems and the ability of land for climate change mitigation. Additionally, soil degradation has negative implications on soil quality. This thesis analyzes the effects of agricultural-driven global soil degradation, in particular tillage and residue management. At first, a review the state of knowledge on global soil degradation is provided. Soil organic carbon (SOC) decline is one of the major forms of soil degradation on cropland and a useful indicator of the status of soil degradation. Secondly, to study the effects of different pathways of agricultural management on biophysical and biogeochemical flows, the global ecosystem model Lund-Potsdam-Jena managed Land (LPJmL) is extended by a detailed representation of tillage practices and residue management. This improvement of LPJmL allows for the analysis of management-related effects on agricultural mitigation of climate change adaption and the reduction of environmental impacts. The model can simulate the effects of conservation practices on SOC stocks and CO2 emissions. And third, SOC development and the effects of different management assumptions under climate change is analyzed. This shows that approximately 215 Pg SOC was lost due to the historical conversion of natural land to cropland and up to 38 Pg SOC could be additionally lost on already existing cropland until the end of the century if cropland is not managed sustainably. The type of tillage system has small effects on the SOC stocks, while the choice of crop residue treatment is shown to be the main driver governing SOC development. Returning residues to the soil slows the decline of SOC, and positively affects soil moisture and crop productivity, with regional differences. In total, up to 46% of todays’ cropland shows the potential for SOC increase, while at least 52% of cropland today will undergo further SOC loss as a form of soil degradation.

  • Open Access English
    Authors: 
    Zoe Mayer; Andres Epperlein; Elena Vollmer; Rebekka Volk; Frank Schultmann;
    Publisher: Multidisciplinary Digital Publishing Institute
    Country: Germany

    Thermography for building audits is commonly carried out by means of terrestrial recording processes with static cameras. The implementation of drones to automatically acquire images from various perspectives can speed up and facilitate the procedure but requires higher recording distances, utilizes changing recording angles and has to contend with the effects of movement during image capture. This study investigates the influence of different drone settings on the quality of thermographic images for building audits in comparison to ground-based acquisition. To this end, several buildings are photographically captured via unmanned aerial vehicle and classical terrestrial means to generate a dataset of 968 images in total. These are analyzed and compared according to five quality criteria that are explicitly chosen for this study to establish best-practice rules for thermal image acquisition. We discover that flight speeds of up to 5 m/s have no visible effects on the image quality. The combination of smaller distances (22 m above a building) and a 45° camera angle are found to allow for both the qualitative and quantitative analysis of rooftops as well as a qualitative screening of building façades. Greater distances of 42 m between camera and building may expedite the acquisition procedure for larger-scaled district coverage but cannot be relied upon for thermal analyses beyond qualitative studies.

  • Open Access English
    Authors: 
    Maja Trumic; Cosimo Della Santina; Kosta Jovanovic; Adriano Fagiolini;
    Countries: Germany, Italy, Netherlands

    This letter investigates the stability properties of the soft inverted pendulum with affine curvature - a template model for nonlinear control of underactuated soft robots. We look at how changes in physical parameters affect stability and equilibrium. We give conditions under which zero dynamics corresponding to a collocated choice of the output is (locally or globally) stable or unstable. We leverage these results to design a switching controller that stabilizes a class of nonlinear equilibria of the pendulum, which can drive the system from one equilibrium to another.

  • Open Access English
    Authors: 
    Drebenstedt, Ireen;
    Publisher: Universität Hohenheim
    Country: Germany

    Climate change poses a challenge for the production of crops in the twenty-first century due to alterations in environmental conditions. In Central Europe, temperature will be increased and precipitation pattern will be altered, thereby influencing soil moisture content, physiological plant processes and crop development in agricultural areas, with impacts on crop yield and the chemical composition of seeds. Warming and drought often occur simultaneously. The combination of multiple abiotic stresses can be synergistic, leading to additive negative effects on crop productivity. To date, little information is available from multi-factor experiments analyzing interactive effects of warming and reduced precipitation in an arable field. In addition, one major issue of studying climate change effects on crop development in the long-term is that weather conditions can vary strongly between years, e.g., with hot and dry summers in comparison to cool and wet ones, which directly affects soil moisture content and indirectly affects crop development. Thus, considering yearly weather conditions seems to be important for the analyses of climate change effects on aboveground biomass and harvestable yield of crops. The aim of the present work was to identify single and combined effects of soil warming (+2.5 °C), reduced summer precipitation amount (-25%), and precipitation frequency (-50%) on crop development, ecophysiology, aboveground biomass and yield as well as on yield quality of wheat, barley, and oilseed rape grown in the Hohenheim Climate Change (HoCC) field experiment. This thesis presents novel results from the HoCC experiment in the long-term perspective. Thus, aboveground biomass and yield data (2009-2018) of the three crops were analyzed with regard to their inter-annual variability, including annual fluctuations in weather conditions.This thesis consists of three publications. In the first and second publication a field experiment within the scope of the HoCC experiment was conducted with spring barley (Hordeum vulgare L. cv. RGT Planet) and winter oilseed rape (Brassica napus L. cv. Mercedes) in 2016 and 2017. The objective was to investigate the impacts of soil warming, altered precipitation pattern and their interactions on biomass production and crop yield. In addition, it was examined, whether the simulated climate changes affecting barley photosynthesis and the seed quality compounds of oilseed rape. In the third publication, long-term plant productivity data of wheat, barley, and oilseed rape were evaluated, including aboveground biomass and yield data from the field experiment in 2018 with winter wheat (Triticum aestivum L. cv. Rebell). Der Klimawandel stellt aufgrund veränderter Umweltbedingungen eine Herausforderung für den Anbau von landwirtschaftlichen Nutzpflanzen im 21. Jahrhundert dar. In Mitteleuropa steigt die Temperatur an und die Niederschlagsmuster verändern sich, wodurch die Bodenfeuchte, die physiologischen Pflanzenprozesse und die Pflanzenentwicklung in landwirtschaftlichen Gebieten beeinflusst werden. Dies wirkt sich auf den Ernteertrag und die chemische Zusammensetzung der Erträge aus. Häufig treten Erwärmung und Trockenheit gleichzeitig auf. Dabei kann sich das Vorkommen mehrerer abiotischer Stressoren synergistisch auswirken und zu additiv negativen Effekten auf die Pflanzenproduktivität führen. Bisher liegen nur wenige Informationen aus multifaktoriellen Experimenten vor, welche die Wechselwirkungen von Erwärmung und Trockenheit in einem landwirtschaftlichen Feld untersuchen. Darüber hinaus ist es wichtig die Auswirkungen des Klimawandels auf die Entwicklung von Nutzpflanzen in Langzeitstudien zu untersuchen, da die Wetterbedingungen zwischen den Jahren stark variieren können, z. B. mit heißen und trockenen Sommern im Vergleich zu kühlen und nassen, mit direkter Auswirkung auf die Bodenfeuchte und indirekter Wirkung auf die Entwicklung der Pflanzen. Demzufolge scheint eine Berücksichtigung der jährlichen Wetterbedingungen wichtig zu sein, wenn die Folgen des Klimawandels auf die oberirdische Biomasse und den Ernteertrag von landwirtschaftlichen Nutzpflanzen abgeschätzt werden. Das Ziel der vorliegenden Arbeit war es im Rahmen des Hohenheim Climate Change (HoCC) Feld-Experimentes die Folgen der drei Faktoren Bodenerwärmung (+2,5°C), reduzierter Sommer Niederschlagsmenge (-25 %) und Niederschlagshäufigkeit (-50 %) einzeln oder in Kombination auf die Parameter Pflanzenentwicklung, Ökophysiologie, oberirdische Biomasse, Ertrag und Ertragsqualität von Weizen, Gerste und Raps zu untersuchen. In dieser Arbeit werden neue Ergebnisse aus dem Langzeit - HoCC-Experiment präsentiert. Dazu wurden Daten von 2009-2018 zu oberirdischer Biomasse und Ertrag der drei Kulturen hinsichtlich ihrer zwischenjährlichen Variabilität analysiert und jährliche Schwankungen in den Witterungsbedingungen berücksichtigt. Die Dissertation besteht aus drei Publikationen. In der ersten und zweiten Veröffentlichung wurde im Rahmen des HoCC Experimentes in den Jahren 2016 und 2017 ein Feldversuch mit den Nutzpflanzen Sommergerste (Hordeum vulgare L. cv. RGT Planet) und Winterraps (Brassica napus L. cv. Mercedes) durchgeführt. Ziel war es, die Auswirkungen einer Bodenerwärmung, veränderten Niederschlagsmustern und deren Wechselwirkungen auf die Biomasseproduktion und den Ernteertrag zu untersuchen. Darüber hinaus wurde untersucht, ob sich die simulierten Klimaänderungen auf die Photosynthese von Gerste sowie auf die Inhaltsstoffe von Rapssamen auswirken. In der dritten Veröffentlichung wurden Langzeit - Produktivitätsdaten von Weizen, Gerste, und Raps ausgewertet, darunter oberirdische Biomasse und Ertragsdaten aus dem HoCC Feldversuch von 2018 mit Winterweizen (Triticum aestivum L. cv. Rebell).

  • Open Access English
    Authors: 
    Guzman Bustamante, Ivan;
    Publisher: Universität Hohenheim
    Country: Germany

    Agricultural activities are responsible for a substantial share of anthropogenic greenhouse gases. At the same time, agricultural production must feed a growing world population under a changing climate. In the case of wheat, the use of nitrogen (N) fertilizers is needed in order to insure grain yield and quality. Nevertheless, its use is associated with reactive N losses, which are detrimental for the environment and human health. Among the gaseous N species emitted after N fertilization we find nitrous oxide (N2O), a potent greenhouse gas, and ammonia (NH3) that after its deposition can be oxidized to N2O. Chemical compounds such as nitrification and urease inhibitors (NIs and UIs, respectively) are a useful tool, able to raise the fertilizer nitrogen use efficiency, by retarding the nitrification of ammonium based fertilizer in the case of NIs and by retarding the hydrolysis of urea in the case of UIs. A side benefit of the use of NIs is the reduction of N2O emissions. The use of UIs reduces the NH3 volatilization. One of the most used NIs in Europe is 3,4-dimethylpyrazol phosphate (DMPP) which can be applied with ammonium sulfate nitrate (ASN). The relatively new NI, 3,4-dimethylpyrazol succinic acid (DMPSA), acts similarly to DMPP but has a different time of action and can be applied to several fertilizers, unlike DMPP. N-(n-butyl) thiophosphoric triamide (NBPT) is an effective UI that provenly reduces NH3 volatilization by inhibiting the urease enzyme. In a two-year field experiment with winter wheat several fertilizer strategies were tested, including splitting strategies, use of NIs and reduction of N amount. Reducing N amount reduces the amount of soil mineral N, which is the substrate for N2O producing microbiological processes, nitrification and denitrification. Splitting of N fertilizer might reduce soil mineral N as well because N fertilizer applications are better suited to the physiological needs of the wheat plants. Applying NIs in splitting schemes may further mitigate emissions. The relationship between N amount and N2O losses in a wheat production system was investigated by applying lower and higher N amounts than the recommended N application rate. Use of DMPP was able to reduce N2O emissions in both years, not only on an annual basis (by 21 %: 3.1 vs 2.5 kg N2O-N ha-1 a-1 average for both years) but also during winter, when up to 18 % of total annual emissions occurred. A change of the soil microbial community due to DMPP could be the reason for the reduction of winter emissions 8 to 12 months after DMPP application. An economic assessment of N fertilizer amount showed that DMPP applied with suboptimal N fertilizer amounts can maintain yield and at the same time decrease yield scaled N2O emissions compared to an optimal N fertilizer rate without NI. Using CAN together with the NI DMPSA reduced N2O emissions only during the vegetation period. On an annual basis, DMPSA did not significantly reduce N2O emissions. Because DMPSA and DMPP were applied with different N fertilizers with different ammonium and nitrate shares, a direct comparison between these two NIs cannot be made. A traditional threefold split fertilization did not reduce annual emissions compared to a single application of ASN or CAN. Nevertheless, the use of DMPP in twofold split applications reduced annual emissions significantly by 33 % and increased protein content by 1.6 %. Because N2O flux peaks were not as high as expected after N fertilization during the first year, a short experiment investigating the effect of soil moisture, N and C application on N2O fluxes was conducted. A C limitation of the field was found, which explained high N2O emission events when C was available, e.g. after rewetting of dry soil and incorporation of straw after harvest. In this context we tested the removal of wheat straw – which should reduce the organic substrate supply for denitrifiers – as a possible mitigation strategy. Nevertheless, the removal of straw had no effect on N2O emissions. Furthermore, the effect of DMPP on microorganisms was studied in an incubation experiment: the copy number of bacterial amoA genes (nitrifiers) was lowered by the use of DMPP, while the number of archaeal amoA genes was increased by DMPP. Gene copy number of denitrifiers was unaffected by DMPP, nevertheless, soil respiration was reduced when DMPP was applied. It seems as DMPP has an inhibiting effect on heterotrophic organisms, nevertheless, the investigated variables did not support this hypothesis, so that further investigation is needed. The effect of NBPT and straw residues on NH3 and N2O emissions was studied in a two-week incubation experiment with a slightly alkaline soil. NBPT reduced NH3 volatilization and N2O fluxes from urea fertilization almost completely. Incorporation of straw residues significantly increased N2O emissions. In a further four-week incubation experiment, the effect of NBPT in two concentrations and DMPP was studied. A higher NBPT concentration as the recommended rate, reduced NH3 emissions by 53 %; DMPP on the other hand increased NH3 volatilization by 70 %. Regarding N2O, DMPP reduced emissions to the same level as the unfertilized control; NBPT only shifted the emission peak so that by the end of the experiment no difference in the cumulative N2O emission was found between urea and NBPT treatments. These results show that UI can lead to a reduction of N2O emissions, but the ammonium formed by the urea hydrolysis should be used by crops, otherwise it serves as a substrate for N2O production in soils. In the final incubation experiment, the combined application of a NI (DMPSA) and a UI (NBPT) was studied. Lower concentrations than the recommended doses were applied in order to assess synergistic effects. The combined application of DMPSA and NBPT did not lead to synergistic effects in the analyzed variables (soil urea amount, soil mineral N, ammonia volatilization, soil respiration and N2O emission). The higher the NBPT concentration, the slower urea was hydrolyzed and the higher the reduction in NH3 volatilization. A third of DMPSA application rate was enough to reduce N2O emissions; however, the use of NI increased NH3 losses. Our results highlight the importance of annual datasets when assessing mitigation strategies for N2O. For wheat production, a reduction of the N fertilizer amount when a NI is used should be taken into consideration. When elite wheat cultivars are grown split application with NI fertilizers could ensure high protein content and simultaneously reduce N2O emission. Urea fertilizer should be applied with NI and UI so that NH3 volatilization and N2O emission is reduced. Nevertheless, long-term effects of these compounds on soil microbiology must be monitored to avoid unseen ecotoxicological effects. Since some of these compounds or their metabolites might be absorbed by plants and end up in food and feed more research is needed to protect consumers. Landwirtschaftliche Aktivitäten sind für einen erheblichen Teil der anthropogenen Treibhausgase verantwortlich. Gleichzeitig muss die landwirtschaftliche Produktion eine wachsende Weltbevölkerung in einem sich verändernden Klima ernähren. Bei Weizen ist der Einsatz von Stickstoffdünger (N) erforderlich, um den Ertrag und die Qualität des Getreides zu sichern. Der Einsatz von Stickstoffdüngern ist jedoch mit reaktiven N-Verlusten verbunden, die sich nachteilig auf die Umwelt und die menschliche Gesundheit auswirken. Zu den gasförmigen N-Spezies, die nach der N-Düngung freigesetzt werden, gehören Distickstoffmonooxid (N2O), ein starkes Treibhausgas, und Ammoniak (NH3), das nach seiner Deposition zu N2O oxidiert werden kann. Chemische Substanzen wie Nitrifikations- und Ureaseinhibitoren (NI bzw. UI) sind ein wirksames Mittel, um die N-Nutzungseffizienz von Düngemitteln zu erhöhen, indem sie die Nitrifikation von Ammonium-basierten Düngemitteln - im Fall von NI - und die Harnstoffhydrolyse - im Fall von UI - verzögern. Ein positiver Nebeneffekt der Anwendung von NI ist die Minderung der N2O-Emissionen. Durch den Einsatz von UI wird die NH3-Volatilisierung reduziert. Einer der in Europa am häufigsten verwendeten NI ist 3,4-Dimethylpyrazolphosphat (DMPP), das zusammen mit Ammonsulfatsalpeter (ASS) eingesetzt werden kann. Der relativ neue NI, 3,4-Dimethylpyrazolbernsteinsäure (DMPSA), wirkt ähnlich wie DMPP, hat aber einen späteren Wirkzeitpunkt und kann im Gegensatz zu DMPP mit mehreren Düngemitteln angewendet werden. N-(n-Butyl)-thiophosphorsäuretriamid (NBPT) ist ein wirksamer UI, der nachweislich die NH3-Volatilisierung durch Hemmung des Enzyms Urease reduziert. In einem zweijährigen Feldversuch mit Winterweizen wurden verschiedene Düngestrategien getestet, darunter Splitting-Strategien, die Verwendung von NI und die Reduzierung der N-Menge. Die Verringerung der N-Menge reduziert die mineralischen N-Gehalte in Böden, die das Substrat für die mikrobiellen N2O-Quellprozesse Nitrifikation und Denitrifikation darstellen. N-Splitting kann die mineralischen N-Gehalte in Böden ebenfalls verringern, da die N-Düngung besser auf die physiologischen Bedürfnisse der Weizenpflanzen abgestimmt ist. Die Anwendung von NI-Düngern im Rahmen von Splitting-Strategien kann die Emissionen weiter verringern. Der Zusammenhang zwischen der N-Menge und den N2O-Verlusten in einem Weizenanbausystem wurde untersucht, indem niedrigere und höhere N-Mengen als die empfohlene N-Menge ausgebracht wurden. Der Einsatz von DMPP konnte die N2O-Emissionen in beiden Jahren nicht nur auf Jahresbasis reduzieren (um 21 %: 3,1 gegenüber 2,5 kg N2O-N ha-1 a-1 im Durchschnitt beider Jahre), sondern auch im Winter, in dem bis zu 18 % der gesamten Jahresemissionen auftraten. Eine Veränderung der mikrobiellen Bodengemeinschaft durch DMPP könnte der Grund für den Rückgang der N2O-Emissionen 8 bis 12 Monate nach DMPP-Anwendung sein. Eine wirtschaftliche Bewertung der N Düngermenge zeigte, dass DMPP mit suboptimalen N-Düngermengen ausgebracht, im Vergleich mit einer optimalen N-Düngung ohne NI den Ertrag aufrechterhalten und gleichzeitig die ertragsbezogenen N2O-Emissionen verringern kann. Der Einsatz von Kalkammonsalpeter (KAS) zusammen mit dem NI DMPSA reduzierte die N2O-Emissionen nur während der Vegetationsperiode. Auf Jahresbasis reduzierte DMPSA die N2O-Emissionen nicht signifikant. Da DMPSA und DMPP mit unterschiedlichen N-Düngemitteln ausgebracht wurden, die unterschiedlichen Ammonium- und Nitratanteilen aufwiesen, ist ein direkter Vergleich zwischen diesen beiden NIs nicht möglich. Eine herkömmliche dreifach gesplittete Applikation verringerte die jährlichen Emissionen im Vergleich zu einer einmaligen Anwendung von ASS oder KAS nicht. Die Verwendung von DMPP in einer zweifachen Splitapplikation reduzierte die jährlichen Emissionen jedoch deutlich um 33 % und erhöhte den Proteingehalt des Weizenkorns um 1,6 %. Da die Höchstwerte der N2O-Flüsse nach der N-Düngung im ersten Jahr vergleichsweise gering waren, wurde ein Kurzexperiment durchgeführt, in dem die Auswirkungen von Bodenfeuchte, N- und C-Verfügbarkeit auf die N2O-Flüsse untersucht wurden. Es wurde eine C-Limitierung des Bodens festgestellt, was die hohe N2O-Emissionen erklärte, wenn C mikrobiell verfügbar war, z. B. nach Wiederbefeuchtung von trockenem Boden und nach Einarbeitung von Stroh nach der Ernte. In diesem Zusammenhang wurde die Abfuhr von Weizenstroh – das das organische Substratangebot für Denitrifikanten reduzieren sollte – als eine mögliche Minderungsstrategie getestet, sie hatte jedoch keine Auswirkungen auf die N2O-Emissionen. Darüber hinaus wurde die Wirkung von DMPP auf die mikrobielle Gemeinschaft in einem Inkubationsversuch untersucht: Die Kopienzahl der bakteriellen amoA-Gene (Nitrifikanten) wurde durch den Einsatz von DMPP verringert, während die Zahl der amoA-Gene von Archaeen durch DMPP erhöht wurde. Die Anzahl der Genkopien von Denitrifikanten wurde durch DMPP nicht beeinflusst, jedoch wurde die Bodenatmung durch DMPP verringert. Es ist anzunehmen, dass DMPP eine hemmende Wirkung auf heterotrophe Organismen hat, jedoch haben die untersuchten Variablen diese Hypothese nicht bestätigt, so dass weitere Untersuchungen erforderlich sind. Die Wirkung von NBPT und Strohresten auf die Emission von NH3 und N2O wurde in einem zweiwöchigen Inkubationsexperiment mit einem Boden mit leicht alkalischen pH-Wert untersucht. NBPT reduzierte die NH3-Volatilisierung und N2O-Flüsse aus der Harnstoffdüngung fast vollständig. Die Einarbeitung von Strohrückständen erhöhte die N2O-Emissionen erheblich. In einem weiteren vierwöchigen Inkubationsversuch wurde die Wirkung von zwei unterschiedlichen NBPT-Konzentrationen sowie von DMPP untersucht. Eine höhere NBPT-Konzentration als die empfohlene Rate reduzierte die NH3-Emissionen um 53 %; DMPP hingegen erhöhte die NH3-Volatilisierung um 70 %. In Bezug auf N2O reduzierte DMPP die Emissionen auf das gleiche Niveau wie in der ungedüngten Kontrolle; NBPT verschob lediglich die Emissionsspitze, so dass am Ende des Versuchs kein Unterschied in der kumulativen N2O-Emission zwischen den Behandlungen mit Harnstoff und NBPT festgestellt wurde. Diese Ergebnisse zeigen, dass UI zu einer Verringerung der N2O-Emissionen führen kann, aber das nach Harnstoffhydrolyse gebildete Ammonium von Kulturpflanzen genutzt werden muss, da es sonst als Substrat für die N2O-Bildung in Böden genutzt wird. Im letzten Inkubationsversuch wurde die kombinierte Anwendung eines NI (DMPSA) und eines UI (NBPT) untersucht. Es wurden niedrigere Konzentrationen als die empfohlenen Dosen verwendet, um synergistische Effekte zu evaluieren. Die kombinierte Anwendung von DMPSA und NBPT führte nicht zu synergistischen Effekten (Harnstoffmenge und mineralischer Stickstoff im Boden, NH3-Volatilisierung, Bodenatmung und N2O-Emission). Je höher die NBPT-Konzentration, desto langsamer wurde der Harnstoff hydrolysiert und desto stärker wurde die NH3-Volatilisierung reduziert. Ein Drittel der empfohlenen DMPSA-Aufwandsmenge reichte aus, um die N2O-Emissionen zu verringern; die Verwendung von NI erhöhte jedoch die NH3-Verluste. Die Ergebnisse unterstreichen die Bedeutung ganzjähriger Datensätze bei der Bewertung von Minderungsstrategien für N2O. Beim Weizenanbau sollte eine Verringerung der N-Düngermenge beim Einsatz von NI in Betracht gezogen werden. Beim Anbau von Elite-Weizensorten kann eine gesplittete N-Gabe mit NI einen hohen Proteingehalt bei gleichzeitiger Minderung der N2O-Emission gewährleisten. Harnstoffdünger sollte mit NI und UI ausgebracht werden, so dass die NH3-Volatilisierung und die N2O-Emission verringert werden. Dennoch müssen die langfristigen Auswirkungen dieser Verbindungen auf die mikrobielle Gesellschaft von Böden untersucht werden, um unvorhergesehene ökotoxikologische Auswirkungen zu vermeiden. Da einige dieser Verbindungen oder ihre Metaboliten von Pflanzen aufgenommen werden und in Lebens- und Futtermittel gelangen könnten, ist weitere Forschung zum Schutz der Verbraucher erforderlich.

  • Publication . 2023
    English
    Authors: 
    Licka, Maria-Theresa; Schweikert, Mario;
    Publisher: Physikalisch-Technische Bundesanstalt (PTB)
    Country: Germany

    This project enables early grapevine leaf disease identification on grape leaves by cell phone images, thereby allowing a precise usage of pesticides. The application is based on artificial intelligence (AI) which is trained to detect and differentiate the most common diseases. A continuous update of the extent and geographical location of disease spreading gives further valuable information to the winemakers using the application. In der Jungen Wissenschaft werden Forschungsarbeiten von Schüler/innen, die selbstständig, z.B. in einer Schule oder einem Schülerforschungszentrum, durchgeführt wurden, veröffentlicht. Junge Wissenschaft. Paper 10/2022

  • Open Access English
    Authors: 
    Laudien, Rahel;
    Publisher: Humboldt-Universität zu Berlin
    Country: Germany

    Die Anzahl der unterernährten Menschen in der Welt steigt seit 2017 wieder an. Der Klimawandel wird den Druck auf die Landwirtschaft und die Ernährungssicherheit weiter erhöhen, insbesondere für kleinbäuerliche und von Subsistenzwirtschaft geprägte Agrarsysteme in den Tropen. Um die Widerstandsfähigkeit der Ernährungssysteme und die Ernährungssicherheit zu stärken, bedarf es eines Klimarisikomanagements und Klimaanpassung. Dies kann sowohl die Antizipation als auch die Reaktion auf die Auswirkungen der globalen Erwärmung ermöglichen. Eine zentrale Rolle spielen in dieser Hinsicht landwirtschaftliche Modelle. Sie können die Reaktionen von Pflanzen auf Veränderungen in den Klimabedingungen quantifizieren und damit Risiken identifizieren. Diese Dissertation demonstriert anhand dreier in Peru, in Tansania und in Burkina Faso durchgeführten Fallstudien, wie statistische Ertragsmodelle das Klimarisikomanagement und die Anpassung in der tropischen Landwirtschaft unterstützen können. Während die erste Studie zeigt, wie Klimaanpassungsbestrebungen unterstützt werden können, werden in Studie zwei und drei statistische Modelle genutzt, um Ertrags- und Produktionsvorhersagen zu erstellen. Die Ergebnisse können dazu beitragen, Frühwarnsysteme für Ernährungsunsicherheit zu unterstützen. In den drei Veröffentlichungen werden neue Ansätze statistischer Ertragsmodellierung auf verschiedenen räumlichen Ebenen vorgestellt. Ein besonderer Fokus liegt hierbei auf der Weiterentwicklung von bisherigen Ertragsvorhersagen, insbesondere in Bezug auf unabhängige Modellvalidierungen, eine stärkere Berücksichtigung von Wetterextremen und die Übertragbarkeit der Modelle auf andere Regionen. The number of undernourished people in the world has been increasing since 2017. Climate change will further exacerbate pressure on agriculture and food security, particularly for smallholder and subsistence-based farming systems in the tropics. Anticipating and responding to global warming through climate risk management is needed to increase the resilience of food systems and food security. Crop models play an indispensable role in this regard. They allow quantifying crop responses to changes in climatic conditions and thus identify risks. This dissertation demonstrates how statistical crop modelling can inform climate risk management and adaptation in tropical agriculture in the case studies of Peru, Tanzania and Burkina Faso. While the first study shows how statistical crop models can support climate adaptation, studies two and three provide yield and production forecasts. The results can contribute to supporting early warning systems on food insecurity. The three publications present novel approaches of statistical yield modelling at different spatial scales. A particular focus is on further developing existing yield forecasts, especially with regard to independent rigorous model validations, improved consideration of weather extremes, and the transferability of the models to other regions.

  • Open Access English
    Authors: 
    Musse Tesfaye; Ashenafi Manaye; Berihu Tesfamariam; Zenebe Mekonnen; Shibire Bekele Eshetu; Katharina Löhr; Stefan Sieber;
    Country: Germany

    Despite their ecological importance, dry forests’ contribution to climate change adaptation is often neglected. Hence, this study was initiated to assess the socioeconomic contribution of dry forests to climate change adaptation in Tigray Region, Ethiopia. A mixed quantitative and qualitative research design was used to examine the role of dry forests in climate change adaptation. Household questionnaire survey, key informants, and a focus group discussion were used to collect data. The results indicated that 94% of all households visited a dry forest at least once a month to access the forest and forest products. While the dry forest income level varied significantly (p < 0.05), the overall dry forest income level contributed to 16.8% of the total household income. Dry forest income enabled the reduction of the area between the line of equality and the Lorenz curve by 21% in dry evergreen Afromontane Forest users, by 3.02% in Combretum–Terminalia woodland users, and by 3% in Acacia–Commiphora woodland users. Gender, occupation, wealth status, and distance from the forest to their homes are all factors that significantly affected Combretum–Terminalia woodland users’ income level. Among Acacia–Commiphora woodland users, the respondents’ age influenced the dry forest income level, whereas, among dry evergreen Afromontane Forest users, the family size of the household influenced the dry forest income level. The findings of this study could help policy makers understand the crucial role of dry forest income in the livelihood of the community and in climate change adaptation. Policymakers could reduce the pressure on dry forests by introducing policies that recognize the role of dry forest income in reducing poverty and income inequality and by establishing farmer cooperation in commercializing the non-timber forest products which support the long-term coping and adaptation strategy. Further research is needed to understand the increasing role of dry forest products in climate change adaptation over time and its contribution to the national economy at large. Ethiopian Environment and Forestry Research Institute Open Access Fund of the Leibniz Association Peer Reviewed

  • Closed Access
    Authors: 
    Mendes, Jéssica Alves Justo; Carvalho, Nubia Gabriela Pereira; Mourarias, Murilo Neves; Careta, Catarina Barbosa; Vânia Gomes Zuin, Gomes Zuin; Gerolamo, Mateus Cecílio;
    Publisher: Elsevier BV
    Country: Germany

    Agribusinesses need to answer to societal growing concerns regarding the use of natural resources. In this context, the digital technologies described by Industry 4.0 appear as allies in the optimization of agribusiness. The use of these technologies is closely related to digital transformation, leading to this work's goal: to analyze the dimensions of Digital Transformation (DT) in the Modern Agricultural (MA) context. The methodology of this study was divided into three main parts. Firstly, a Systematic Literature Review (SLR) was performed with the help of the SciMAT® software. Then, a content analysis was performed using a semantic technique to define the dimensions a posteriori. Finally, a Latent Dirichlet Allocation (LDA) model using the RStudio® software was made to validate the results found in the semantic analysis. To the best of our knowledge, there are only five studies that define dimensions of DT in MA, however none of them used a robust SLR with content analysis. Two of these studies did empirical researches with specialists to define the dimensions, and the other three defined specifics dimensions only a priori. Our study brings as an innovation the definition of the dimensions a posteriori through the SLR. Additionally, no studies that validated the results using a LDA model were found. As a result of our studies, we have identified eight dimensions: Economical, Government, Sustainability; Infrastructure, Technological, Cooperation, Change, and People/Knowledge/Skills. The first three dimensions are more influenced by external factors, while external and internal factors influence the following three, and finally, the last two are more affected by internal factors. For each set of the dimensions listed, the main pillars/drivers/motivators and the main barriers/challenges/difficulties were identified. For example, for the mixed dimension, the first set can be the creation of regional centers that broadcast digital technology content. Regarding the second set, we can cite the difficulty in transforming data into useful information for the same dimension. The results serve as a foundation for both practical business actions and the academic field. They presented a robust theoretical basis for developing guidelines for agricultural management (of farms and other related startups and companies) and public policies to encourage the adoption and implementation of technological resources guided by sustainable development goals. The impacts can be viewed as: reduced production through sustainable and responsible production, assistance in the conscious and sustainable use of water resources, and sustainable actions to mitigate climate change. In conclusion, we highlight that the environment in which the framework will be applied should influence the emphasis given to each set of dimensions. For instance, legislators that seek to develop policies for DT in MA should pay greater attention to the external dimensions. In contrast, farmers that seek to implement DT should be more focused on the internal dimensions.

  • Publication . Doctoral thesis . 2022
    Open Access English
    Authors: 
    Von Albedyll, Luisa;
    Publisher: Universität Bremen
    Country: Germany

    The Arctic Ocean is undergoing a major transition from a year-round sea ice cover to ice-free summers with global consequences. Sea ice thickness is at the center of the ongoing changes because the thickness regulates key processes of the Arctic climate system and in the last six decades, the mean thickness has more than halved. With the most scientific attention on the increased melting and delayed freezing of Arctic sea ice, dynamic thickness change caused by sea ice deformation has remained less studied. Dynamic thickness change alters the sea ice thickness through colliding floes that raft or form pressure ridges or floes breaking apart resulting in leads. Because sea ice grows faster in open water and under thin ice, new ice formation is enhanced in those leads compared to the surrounding ice during the growth season. Because thinner ice is easier to break and move, the ongoing thinning of Arctic sea ice may result in more ridges and leads, which, in turn, could increase ice thickness in winter. However, our limited quantitative understanding of dynamic thickness change has hampered any robust prediction if and to which extent such increased dynamic thickening in winter could mitigate summer thinning in the warming Arctic. To address this gap, we need more robust estimates of the current magnitude as well as a better understanding and representation of the different processes in state-of-the-art sea ice models. Thus, the overarching goal of this thesis is to resolve and quantify dynamic thickness change and to link it to the corresponding sea ice deformation. I focus on the freezing period addressing the following research questions: (1) How large is the dynamic contribution to the mean sea ice thickness in different dynamic regimes? (2) How is deformation shaping the ice thickness distribution? (3) How can high-resolution microwave synthetic aperture radar (SAR) satellite data be used to estimate dynamic thickness change? I answer them in two regional case studies: a unique month-long deformation event during the closing of a polynya north of Greenland and in the Transpolar Drift along the drift track of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. The combination of available high-resolution electromagnetic (EM) induction sounding ice thickness data and high-resolution deformation data offer unique research opportunities to study the highly localized and intermittent dynamic thickness changes. My results show that dynamic thickness change plays an important role in both convergent and divergent drift regimes. Studying the polynya closing event reveals that convergence can locally double the thickness of young, thin (<1 m) ice and restore the mean thickness of 2 m of the surrounding multi-year ice within one month. In more divergent regimes like the Transpolar Drift, new ice formation in leads contributes 30% to the sea ice mass balance. There are indicators that this fraction may increase in a more seasonal Arctic sea ice cover. Besides the mean changes, I show how deformation shapes the ice thickness distribution (ITD) with a particular focus on the transfer of observational results into modeling concepts. I identify the ice that participates in ridging, show that the current ridging parameterization in state-of-the-art models is not able to reproduce the observed changes in the shape of the ITD, and suggest an updated parameterization that relates the shape of the ITD proportionally to the observed deformation. Lastly, I demonstrate that SAR-derived deformation can successfully be used to describe sea ice dynamics and to estimate the dynamic contribution to the ice thickness on regional scales. In conclusion, this dissertation substantially advances our understanding of dynamic thickness change with robust and quantitative estimates. The high-resolution EM ice thickness data with simultaneously collected high-resolution deformation data provide an excellent opportunity to deepen our process understanding and to evaluate and improve the modeling of the dynamic processes shaping the ITD. With the increasing availability of SAR data in the Arctic and the presented deformation datasets and methods, new opportunities are opening up to derive dynamic thickness change on Arctic-wide scales and to study the temporal trends in dynamic thickness change over the last decade.