Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Rural Digital Europe
  • Publications
  • Canadian Journal of Forest Research
  • DIGITAL.CSIC

Date (most recent)
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: C.L. Faiola; M. Helbig; Y. Zhang; E.R. Beamesderfer; +3 Authors

    To help bridge science topics related to land-atmosphere interactions, we organized a virtual special issue in this journal (Agricultural and Forest Meteorology [AFM]) entitled, “Land-Atmosphere Interactions: Integrating Surface Flux with Boundary Layer Measurements.” The motivation for the special issue was driven by existing disciplinary barriers between research areas that all address land-atmosphere interactions. In particular, it addressed research silos between those who study features of the land surface, surface fluxes (including water, energy, and trace gases), atmospheric boundary layer growth and thermodynamics, and atmospheric composition and aerosols. The special issue sought to bring these communities together to integrate multiple observations across the soil-vegetation-atmosphere continuum with the aim of 1) improving broader understanding of land-atmosphere interactions, feedbacks, and coupling, 2) fostering new collaborations between atmospheric and surface flux scientists, and 3) identifying new paths for integrative research. Here, we provide an overview and synthesis of the special issue. This special issue emerged from a workshop organized in connection with the AmeriFlux Year of Water Fluxes and with support from the AmeriFlux Management Project and the Department of Energy's Office of Science and in collaboration with community representation from the U.S. Department of Energy's ARM User Facility, and ASR and ESS programs. Y. Zhang's work was supported by DOE Atmospheric System Research (ASR) program through THREAD project at LLNL. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. C. Faiola's work was supported by NSF (AGS award #2035125). A. M. Yáñez Serrano's work was supported by a Ramón y Cajal fellowship (RYC2021-032519-I) funded by the Spanish Ministry of Science and Innovation, the NextGenerationEU program of the European Union, the Spanish plan of recovery, transformation and resilience, and the Spanish Research Agency. Peer reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    DIGITAL.CSIC
    Article . 2024 . Peer-reviewed
    Data sources: DIGITAL.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agricultural and Forest Meteorology
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      DIGITAL.CSIC
      Article . 2024 . Peer-reviewed
      Data sources: DIGITAL.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yann Baril-Chauvette; Pauline Suffice; André Desrochers;

    Several wildlife species are thought to avoid edges of large habitat gaps, such as clear-cuts, but detailed evidence is rarely available for edges of smaller gaps. We compared the responses of nine wintering mammal species to forest edges in southern Quebec, Canada, using high-resolution spatial data from Light Detection And Ranging (LiDAR) and low-resolution photo-interpretation. We defined edges of open areas as roads, lakes, rivers, or forest open areas. We geolocated mammal snow tracks along systematic transect lines between 2009 and 2018. We compared distances of snow tracks and reference points along transects to the nearest edge with linear models. LiDAR data revealed five species avoiding forest open area edges, whereas no avoidance was shown using photo-interpretation data. Weasels (Mustela sp.) were the only species showing a positive association with forest open area edges using photo-interpreted data. No significant response was detected for river or lake edges. Four species were positively associated with road edges. We conclude that avoidance of small forest open area edges is widespread in our study area, but it can only be detected with high-resolution spatial data. Our results imply that edge effect can operate at a fine scale and using appropriate spatial resolution is crucial to detect such effects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Aline Fugeray-Scarbel; Stéphane Lemarié; Frédéric Bernier; Annie Raffin; +1 Authors

    The economic efficiency of conventional breeding strategies for forest trees based on biparental crosses is compared with that of alternative strategies based on pedigree reconstruction using molecular markers. Analyses of economic efficiency is based on comparisons of breeding scenarios corresponding to the same total investment. The first step is the description and cost evaluation of each basic operation, from crossing to genetic selection and clonal archive establishment. Breeding scenarios are then compared by stochastic sampling with a parametric genetic model (POPSIM), the comparison criteria in this case being genetic gain in the seed orchard for a given level of genetic diversity. Additionally, the economic gain resulting from the use of improved material is estimated for different levels of breeding investment. Our analysis shows that genotyping costs account for a much smaller proportion of total investment than phenotyping costs. We also show that, in comparisons of breeding scenarios corresponding to the same total investment, the three main breeding strategies (biparental crosses, polymix crosses, and open pollination) achieve similar genetic gains provided that sufficiently large numbers of parents are considered. These results open up promising perspectives for the wider integration of molecular markers into forest tree breeding strategies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bastien Vandendaele; Olivier Martin-Ducup; Richard A. Fournier; Gaetan Pelletier;

    This study explores how data from a handheld mobile laser scanning (MLS) system and quantitative structural models (QSM) can be used to estimate tree structural attributes. Four MLS acquisition scenarios were investigated in a 1-ha temperate hardwood stand, including 15 m and 35 m parallel lines, nine circular plots, and a 20 m × 20 m grid. Results were compared against terrestrial laser scanning and destructive field measurements. All acquisition scenarios yielded comparable results, except for the 35 m scenario, which showed greater variability. The 20 m × 20 m grid scenario showed the highest accuracy, with a RMSE of 0.41 m (2.07%) for tree height, 3.98 cm (14.93%) for diameter at breast height, 0.21 m³ (19.28%) for merchantable wood volume, and 0.07 m³ (10.11%) for merchantable stem volume. A bias < 5% was observed for these key attributes, except for an 11.68% bias in merchantable wood volume. Overestimation of branch volume was identified as the primary source of bias related to merchantable wood volume. This study highlights MLS's potential for accurate, non-destructive estimation of tree structural attributes, while pointing out the need to refine noise removal and to assess the most suitable acquisition scenarios for various forest types.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luc Guindon; Francis Manka; David L.P. Correia; Philippe Villemaire; +6 Authors

    Accurate and fine-scale forest data are essential to improve natural resource management, particularly in the face of climate change. Here, we present SCANFI, the Spatialized CAnadian National Forest Inventory, which provides coherent, 30m resolution 2020 wall-to-wall maps of forest attributes (land cover type, canopy height, crown closure, aboveground tree biomass, main species composition). These maps were developed using the National Forest Inventory (NFI) photo-plot dataset, a systematic regular sample grid of photo-interpreted high-resolution imagery covering all of Canada’s non-arctic landmass. SCANFI was produced using temporally harmonized summer and winter Landsat imagery along with hundreds of tile-level regional models based on a multi-response k-nearest neighbours and random forest imputation method. This approach revealed the importance of radiometric variables in predicting vegetation attributes, namely winter radiometry, as the large-scale climate gradients were controlled at the tile-level. Cross-validation analyses were done, which revealed robust model performance for structural attributes (biomass R2=0.76; crown closure R2=0.82; height R2=0.78) and tree species cover. SCANFI attributes were also validated with several independent external products, ranging from ground plot-based tree species cover to satellite LiDAR height. The methodology can be used to map time series of these attributes and all other additional variables associated with the NFI photo-plots.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Janne Toivonen; Annika Kangas; Matti Maltamo; Mikko Kukkonen; +1 Authors

    European aspen is a keystone species in boreal forests, which support numerous ecologically important and endangered species. As detection of those species by remote sensing is impossible, we instead investigated the detection of large aspen trees using airborne laser scanning and aerial image data. However, this is a challenge due to their low quantity and scattered occurrence. The performance was assessed with representative and unrepresentative (where aspens were over-represented) samples of the population. First, we detected individual trees and then the Random Forest (RF) classifier was used to identify large aspens. The RF classification was implemented with and without Synthetic Minority Oversampling Technique (SMOTE) to balance the training data due to the rarity of large aspens. At the tree-level, the best F1-score (0.44) was obtained when the unrepresentative plot data were used with SMOTE. However, the F1-score decreased to 0.21 when the representative data were used. The best plot-level (plots with at least one aspen tree) F1-score with the representative plot data was 0.41. We conclude that although data augmentation may improve the result, it is difficult to detect large aspen trees in genuine populations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lady Cardona; Pierre-Luc Couillard; Alexis Achim;

    Forest fires and logging drive the structure of boreal forest landscapes. According to recent studies, stand origin is a key driver of the variation in wood properties in black spruce (Picea mariana (Mill.) BSP.), although the underlying mechanisms remain to be elucidated. By comparing post-cut, post-fire and old-growth forests, this study aimed to better distinguish the effects of stand structure from those of the seed or layer origin of the trees on wood properties. We conducted comparative analyses based on ecological characteristics of the sites and static bending tests of small, defect-free wood specimens. Black spruce stands with a regular structure established after logging or fire exhibited higher stiffness at a given cambial age than old-growth forests with irregular structures, as well as lower wood density in the first 40 rings near the pith. However, the bending strength was comparable in all three types of forests studied. Differences in wood stiffness among stand types appeared to be driven more by stand structure than by the seed or layer origin of the stems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martin Barrette; Isabelle Auger; Nelson Thiffault; Julie Barrette;

    Forest plantations play an increasingly important role in meeting global demand for wood. They usually have higher yield than naturally regenerated forests. Thus, plantations can support economically viable wood production, enable forest conservation elsewere, help mitigate climate change by contributing to carbon sequestration and increase forest resilience and resistance to biotic and abiotic stressors. If yield of plantations is not as high as anticipated, then their use could generate important sustainability issues. There are still major gaps in our understanding of the factors that influence yield, even with respect to black spruce, white spruce, and jack pine, three of the most commonly planted tree species in northeastern North America. Our objective was to evaluate the yield of forest plantations of these species over a 416 000 km2 region that was representative of northeastern North American forests. Contrary to our prediction, realized yield of operational plantations was consistently lower than anticipated. Site index and competition both played a significant role in determining the yield of plantations. In the context of uncertain realized yield of operational plantations, we emphasize the necessity of relying on adaptive management to determine harvest levels that are compatible with sustainable management objectives.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fábio Henrique Della Justina do Carmo; Maristela Volpato; Glaycianne Christine Vieira dos Christine Vieira Santos; Jonnys Paz Castro; +2 Authors

    The Amazon biome is influenced by El Niño event, which reduce precipitation and increase temperature. However, little is known about its effects on tree formation dynamics in this region. Here, we evaluated the effects of local (precipitation, temperature, and solar insolation) and large-scale (El Niño) climatic variables on wood traits of Tectona grandis (teak) in the Amazon. Discs were collected from the base of trees aged 12 years and used for anatomical and physical analyses. We evaluated three periods (i.e., pre-El Niño (2012/2013), El Niño (2014/2015), and post-El Niño (2016/2017)). Wood density, vessels, and rays were compared to local and large-scale climatic variables. The extreme drought caused by El Niño event reduced the width and length of teak vessels. Additionally, precipitation during some months of the year, increased vessel size and wood density. In some months of the year, ambient temperature, reduced vessel width and length. Moreover, the effect of solar insolation depended on soil moisture availability. Thus, our results provided clear evidence of teak acclimatization to El Niño in the Amazon region and should promote further studies on tree responses to climate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shawn Donovan; David A. MacLean;

    We compared three methods for estimating current-year spruce budworm (Choristoneura fumiferana Clem.) defoliation from 2014 to 2021 using a network of 99 permanent sample plots in central Gaspé Peninsula, Québec. Percent current-year defoliation was measured by assessing shoots from mid-crown branches, ocular ratings of all individual trees using binoculars, and provincial government aerial surveys. Ocular survey defoliation differed from branch sample defoliation in 5–6 out of 7 years, consistently underestimating defoliation, across the full range of defoliation severity observed. Nested mixed-effects models for fir-spruce combined, balsam fir, white spruce, and black spruce ocular survey defoliation bias resulted in marginal R2 of 0.40, 0.47, 0.82, and 0.86, respectively. Current defoliation severity and its interaction with previous year defoliation and weather conditions significantly affected ocular survey bias. Correspondence of aerial survey estimates and mean plot defoliation occurred in only 43% of all plot-years and ranged from 14–58% in individual years. Differences between aerial survey defoliation and plot values mainly resulted from assigning an adjacent class (e.g., light <30% assigned as moderate 31–70% defoliation) or misplaced defoliation polygon boundaries, suggesting that assignment of aerial survey defoliation to plots or specific ground areas needs ground truth sampling.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: C.L. Faiola; M. Helbig; Y. Zhang; E.R. Beamesderfer; +3 Authors

    To help bridge science topics related to land-atmosphere interactions, we organized a virtual special issue in this journal (Agricultural and Forest Meteorology [AFM]) entitled, “Land-Atmosphere Interactions: Integrating Surface Flux with Boundary Layer Measurements.” The motivation for the special issue was driven by existing disciplinary barriers between research areas that all address land-atmosphere interactions. In particular, it addressed research silos between those who study features of the land surface, surface fluxes (including water, energy, and trace gases), atmospheric boundary layer growth and thermodynamics, and atmospheric composition and aerosols. The special issue sought to bring these communities together to integrate multiple observations across the soil-vegetation-atmosphere continuum with the aim of 1) improving broader understanding of land-atmosphere interactions, feedbacks, and coupling, 2) fostering new collaborations between atmospheric and surface flux scientists, and 3) identifying new paths for integrative research. Here, we provide an overview and synthesis of the special issue. This special issue emerged from a workshop organized in connection with the AmeriFlux Year of Water Fluxes and with support from the AmeriFlux Management Project and the Department of Energy's Office of Science and in collaboration with community representation from the U.S. Department of Energy's ARM User Facility, and ASR and ESS programs. Y. Zhang's work was supported by DOE Atmospheric System Research (ASR) program through THREAD project at LLNL. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. C. Faiola's work was supported by NSF (AGS award #2035125). A. M. Yáñez Serrano's work was supported by a Ramón y Cajal fellowship (RYC2021-032519-I) funded by the Spanish Ministry of Science and Innovation, the NextGenerationEU program of the European Union, the Spanish plan of recovery, transformation and resilience, and the Spanish Research Agency. Peer reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agricultural and Forest Meteorology
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    DIGITAL.CSIC
    Article . 2024 . Peer-reviewed
    Data sources: DIGITAL.CSIC
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Agricultural and For...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agricultural and Forest Meteorology
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      DIGITAL.CSIC
      Article . 2024 . Peer-reviewed
      Data sources: DIGITAL.CSIC
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yann Baril-Chauvette; Pauline Suffice; André Desrochers;

    Several wildlife species are thought to avoid edges of large habitat gaps, such as clear-cuts, but detailed evidence is rarely available for edges of smaller gaps. We compared the responses of nine wintering mammal species to forest edges in southern Quebec, Canada, using high-resolution spatial data from Light Detection And Ranging (LiDAR) and low-resolution photo-interpretation. We defined edges of open areas as roads, lakes, rivers, or forest open areas. We geolocated mammal snow tracks along systematic transect lines between 2009 and 2018. We compared distances of snow tracks and reference points along transects to the nearest edge with linear models. LiDAR data revealed five species avoiding forest open area edges, whereas no avoidance was shown using photo-interpretation data. Weasels (Mustela sp.) were the only species showing a positive association with forest open area edges using photo-interpreted data. No significant response was detected for river or lake edges. Four species were positively associated with road edges. We conclude that avoidance of small forest open area edges is widespread in our study area, but it can only be detected with high-resolution spatial data. Our results imply that edge effect can operate at a fine scale and using appropriate spatial resolution is crucial to detect such effects.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Aline Fugeray-Scarbel; Stéphane Lemarié; Frédéric Bernier; Annie Raffin; +1 Authors

    The economic efficiency of conventional breeding strategies for forest trees based on biparental crosses is compared with that of alternative strategies based on pedigree reconstruction using molecular markers. Analyses of economic efficiency is based on comparisons of breeding scenarios corresponding to the same total investment. The first step is the description and cost evaluation of each basic operation, from crossing to genetic selection and clonal archive establishment. Breeding scenarios are then compared by stochastic sampling with a parametric genetic model (POPSIM), the comparison criteria in this case being genetic gain in the seed orchard for a given level of genetic diversity. Additionally, the economic gain resulting from the use of improved material is estimated for different levels of breeding investment. Our analysis shows that genotyping costs account for a much smaller proportion of total investment than phenotyping costs. We also show that, in comparisons of breeding scenarios corresponding to the same total investment, the three main breeding strategies (biparental crosses, polymix crosses, and open pollination) achieve similar genetic gains provided that sufficiently large numbers of parents are considered. These results open up promising perspectives for the wider integration of molecular markers into forest tree breeding strategies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Bastien Vandendaele; Olivier Martin-Ducup; Richard A. Fournier; Gaetan Pelletier;

    This study explores how data from a handheld mobile laser scanning (MLS) system and quantitative structural models (QSM) can be used to estimate tree structural attributes. Four MLS acquisition scenarios were investigated in a 1-ha temperate hardwood stand, including 15 m and 35 m parallel lines, nine circular plots, and a 20 m × 20 m grid. Results were compared against terrestrial laser scanning and destructive field measurements. All acquisition scenarios yielded comparable results, except for the 35 m scenario, which showed greater variability. The 20 m × 20 m grid scenario showed the highest accuracy, with a RMSE of 0.41 m (2.07%) for tree height, 3.98 cm (14.93%) for diameter at breast height, 0.21 m³ (19.28%) for merchantable wood volume, and 0.07 m³ (10.11%) for merchantable stem volume. A bias < 5% was observed for these key attributes, except for an 11.68% bias in merchantable wood volume. Overestimation of branch volume was identified as the primary source of bias related to merchantable wood volume. This study highlights MLS's potential for accurate, non-destructive estimation of tree structural attributes, while pointing out the need to refine noise removal and to assess the most suitable acquisition scenarios for various forest types.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luc Guindon; Francis Manka; David L.P. Correia; Philippe Villemaire; +6 Authors

    Accurate and fine-scale forest data are essential to improve natural resource management, particularly in the face of climate change. Here, we present SCANFI, the Spatialized CAnadian National Forest Inventory, which provides coherent, 30m resolution 2020 wall-to-wall maps of forest attributes (land cover type, canopy height, crown closure, aboveground tree biomass, main species composition). These maps were developed using the National Forest Inventory (NFI) photo-plot dataset, a systematic regular sample grid of photo-interpreted high-resolution imagery covering all of Canada’s non-arctic landmass. SCANFI was produced using temporally harmonized summer and winter Landsat imagery along with hundreds of tile-level regional models based on a multi-response k-nearest neighbours and random forest imputation method. This approach revealed the importance of radiometric variables in predicting vegetation attributes, namely winter radiometry, as the large-scale climate gradients were controlled at the tile-level. Cross-validation analyses were done, which revealed robust model performance for structural attributes (biomass R2=0.76; crown closure R2=0.82; height R2=0.78) and tree species cover. SCANFI attributes were also validated with several independent external products, ranging from ground plot-based tree species cover to satellite LiDAR height. The methodology can be used to map time series of these attributes and all other additional variables associated with the NFI photo-plots.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Janne Toivonen; Annika Kangas; Matti Maltamo; Mikko Kukkonen; +1 Authors

    European aspen is a keystone species in boreal forests, which support numerous ecologically important and endangered species. As detection of those species by remote sensing is impossible, we instead investigated the detection of large aspen trees using airborne laser scanning and aerial image data. However, this is a challenge due to their low quantity and scattered occurrence. The performance was assessed with representative and unrepresentative (where aspens were over-represented) samples of the population. First, we detected individual trees and then the Random Forest (RF) classifier was used to identify large aspens. The RF classification was implemented with and without Synthetic Minority Oversampling Technique (SMOTE) to balance the training data due to the rarity of large aspens. At the tree-level, the best F1-score (0.44) was obtained when the unrepresentative plot data were used with SMOTE. However, the F1-score decreased to 0.21 when the representative data were used. The best plot-level (plots with at least one aspen tree) F1-score with the representative plot data was 0.41. We conclude that although data augmentation may improve the result, it is difficult to detect large aspen trees in genuine populations.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lady Cardona; Pierre-Luc Couillard; Alexis Achim;

    Forest fires and logging drive the structure of boreal forest landscapes. According to recent studies, stand origin is a key driver of the variation in wood properties in black spruce (Picea mariana (Mill.) BSP.), although the underlying mechanisms remain to be elucidated. By comparing post-cut, post-fire and old-growth forests, this study aimed to better distinguish the effects of stand structure from those of the seed or layer origin of the trees on wood properties. We conducted comparative analyses based on ecological characteristics of the sites and static bending tests of small, defect-free wood specimens. Black spruce stands with a regular structure established after logging or fire exhibited higher stiffness at a given cambial age than old-growth forests with irregular structures, as well as lower wood density in the first 40 rings near the pith. However, the bending strength was comparable in all three types of forests studied. Differences in wood stiffness among stand types appeared to be driven more by stand structure than by the seed or layer origin of the stems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martin Barrette; Isabelle Auger; Nelson Thiffault; Julie Barrette;

    Forest plantations play an increasingly important role in meeting global demand for wood. They usually have higher yield than naturally regenerated forests. Thus, plantations can support economically viable wood production, enable forest conservation elsewere, help mitigate climate change by contributing to carbon sequestration and increase forest resilience and resistance to biotic and abiotic stressors. If yield of plantations is not as high as anticipated, then their use could generate important sustainability issues. There are still major gaps in our understanding of the factors that influence yield, even with respect to black spruce, white spruce, and jack pine, three of the most commonly planted tree species in northeastern North America. Our objective was to evaluate the yield of forest plantations of these species over a 416 000 km2 region that was representative of northeastern North American forests. Contrary to our prediction, realized yield of operational plantations was consistently lower than anticipated. Site index and competition both played a significant role in determining the yield of plantations. In the context of uncertain realized yield of operational plantations, we emphasize the necessity of relying on adaptive management to determine harvest levels that are compatible with sustainable management objectives.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fábio Henrique Della Justina do Carmo; Maristela Volpato; Glaycianne Christine Vieira dos Christine Vieira Santos; Jonnys Paz Castro; +2 Authors

    The Amazon biome is influenced by El Niño event, which reduce precipitation and increase temperature. However, little is known about its effects on tree formation dynamics in this region. Here, we evaluated the effects of local (precipitation, temperature, and solar insolation) and large-scale (El Niño) climatic variables on wood traits of Tectona grandis (teak) in the Amazon. Discs were collected from the base of trees aged 12 years and used for anatomical and physical analyses. We evaluated three periods (i.e., pre-El Niño (2012/2013), El Niño (2014/2015), and post-El Niño (2016/2017)). Wood density, vessels, and rays were compared to local and large-scale climatic variables. The extreme drought caused by El Niño event reduced the width and length of teak vessels. Additionally, precipitation during some months of the year, increased vessel size and wood density. In some months of the year, ambient temperature, reduced vessel width and length. Moreover, the effect of solar insolation depended on soil moisture availability. Thus, our results provided clear evidence of teak acclimatization to El Niño in the Amazon region and should promote further studies on tree responses to climate.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Shawn Donovan; David A. MacLean;

    We compared three methods for estimating current-year spruce budworm (Choristoneura fumiferana Clem.) defoliation from 2014 to 2021 using a network of 99 permanent sample plots in central Gaspé Peninsula, Québec. Percent current-year defoliation was measured by assessing shoots from mid-crown branches, ocular ratings of all individual trees using binoculars, and provincial government aerial surveys. Ocular survey defoliation differed from branch sample defoliation in 5–6 out of 7 years, consistently underestimating defoliation, across the full range of defoliation severity observed. Nested mixed-effects models for fir-spruce combined, balsam fir, white spruce, and black spruce ocular survey defoliation bias resulted in marginal R2 of 0.40, 0.47, 0.82, and 0.86, respectively. Current defoliation severity and its interaction with previous year defoliation and weather conditions significantly affected ocular survey bias. Correspondence of aerial survey estimates and mean plot defoliation occurred in only 43% of all plot-years and ranged from 14–58% in individual years. Differences between aerial survey defoliation and plot values mainly resulted from assigning an adjacent class (e.g., light <30% assigned as moderate 31–70% defoliation) or misplaced defoliation polygon boundaries, suggesting that assignment of aerial survey defoliation to plots or specific ground areas needs ground truth sampling.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Canadian Journal of Forest Research
    Article . 2024 . Peer-reviewed
    License: CSP TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Canadian Journal of ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Canadian Journal of Forest Research
      Article . 2024 . Peer-reviewed
      License: CSP TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.