Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Rural Digital Europe
  • Publications
  • BJ
  • Computers and Electronics in Agricu...

Date (most recent)
arrow_drop_down
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Soumyashree Kar; Vikram Kumar Purbey; Saurabh Suradhaniwar; Lijalem Korbu; +4 Authors

    Abstract Efficient selection of drought-tolerant crops requires identification and high-throughput phenotyping (HTP) of the complex functional (especially canopy-conductance) traits that elicit plant responses to continually fluctuating environmental conditions. However, phenotyping of such dynamic physiology-based traits has been immensely challenging especially due to the limited availability of adequate methods that can provide continuous measurements of plant-water relations. Therefore, gravimetric phenotyping of plants is being increasingly used to allow one-to-one monitoring of plant-water relations and generate continuous evapotranspiration (ET) profiles. The gravimetric sensors or load cells can provide ET estimates at very high frequencies, e.g. 15-min interval, as chosen by the user. There is however, no study on understanding the optimum frequency or the sampling time at which ET needs to be monitored, such that data-redundancy, noise and processing overhead could be reduced. Hence, this paper makes a novel attempt in identifying the optimum sampling time for phenotyping ET from load cells time series. The proposed procedure includes an ensemble Machine-Learning (ML) approach for optimizing the sampling time through time series forecasting of ET profiles and classification of genotypes using the forecasted ET values. High-frequency load cells data from the LeasyScan, HTP platform, ICRISAT were used to derive the ET profiles at frequencies or scales varying from 15-min to 180-min, followed by ET forecasting and classification at each frequency. For both forecasting and classification, an ensemble of three ML algorithms i.e. Support Vector Machines (SVM), Artificial Neural Network (ANN) and Random Forests (RF) were leveraged. Consequently, the performance metrics (of both the operations) obtained from the ensemble were used to compute the entropy-based optimum sampling time. The results reveal that 60-min interval HTP data could be credibly used for both, forecasting ET as well as correctly classifying the genotypes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computers and Electr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Computers and Electronics in Agriculture
    Article
    License: Elsevier Non-Commercial
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers and Electronics in Agriculture
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computers and Electr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Computers and Electronics in Agriculture
      Article
      License: Elsevier Non-Commercial
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computers and Electronics in Agriculture
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kazuki Saito; Salif Diack; Ibnou Dieng; M. Kabirou N'Diaye;

    Nutrient Manager for Rice (NMR) was tested in the Senegal River valley for the three seasons.NMR is a cloud-based decision-support tool for field-specific fertilizer recommendations.NMR increased rice yield by 1-2.3t/ha compared to farmers' fertilizer practice (FFP).NMR increased profitability by US$ 216-640 per ha compared to FFP. We evaluated recommendations provided by a cloud-based decision-support tool named Nutrient Manager for Rice (NMR) in terms of yield of irrigated lowland rice and profitability in comparison with farmers' fertilizer management practices (FFP) in the Senegal River valley. A total of 102 on-farm trials were conducted over the three seasons (2011 wet season, and 2012 and 2013 dry seasons). On average in each season, NMR recommendations increased rice yield by 1-2.3t/ha and profitability by US$ 216-640 per ha compared to FFP. Differences between FFP and NMR performance were mainly related to timing of the top-dressing of N fertilizer (delayed in the case of FFP), the number of N fertilizer applications (generally just one top-dressing for FFP; two or three for NMR), and application of K. We conclude that NMR offers a promising avenue for increasing the productivity and profitability of irrigated lowland rice in the Senegal River valley.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Electr...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers and Electronics in Agriculture
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    51
    citations51
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Electr...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computers and Electronics in Agriculture
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Soumyashree Kar; Vikram Kumar Purbey; Saurabh Suradhaniwar; Lijalem Korbu; +4 Authors

    Abstract Efficient selection of drought-tolerant crops requires identification and high-throughput phenotyping (HTP) of the complex functional (especially canopy-conductance) traits that elicit plant responses to continually fluctuating environmental conditions. However, phenotyping of such dynamic physiology-based traits has been immensely challenging especially due to the limited availability of adequate methods that can provide continuous measurements of plant-water relations. Therefore, gravimetric phenotyping of plants is being increasingly used to allow one-to-one monitoring of plant-water relations and generate continuous evapotranspiration (ET) profiles. The gravimetric sensors or load cells can provide ET estimates at very high frequencies, e.g. 15-min interval, as chosen by the user. There is however, no study on understanding the optimum frequency or the sampling time at which ET needs to be monitored, such that data-redundancy, noise and processing overhead could be reduced. Hence, this paper makes a novel attempt in identifying the optimum sampling time for phenotyping ET from load cells time series. The proposed procedure includes an ensemble Machine-Learning (ML) approach for optimizing the sampling time through time series forecasting of ET profiles and classification of genotypes using the forecasted ET values. High-frequency load cells data from the LeasyScan, HTP platform, ICRISAT were used to derive the ET profiles at frequencies or scales varying from 15-min to 180-min, followed by ET forecasting and classification at each frequency. For both forecasting and classification, an ensemble of three ML algorithms i.e. Support Vector Machines (SVM), Artificial Neural Network (ANN) and Random Forests (RF) were leveraged. Consequently, the performance metrics (of both the operations) obtained from the ensemble were used to compute the entropy-based optimum sampling time. The results reveal that 60-min interval HTP data could be credibly used for both, forecasting ET as well as correctly classifying the genotypes.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computers and Electr...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Computers and Electronics in Agriculture
    Article
    License: Elsevier Non-Commercial
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers and Electronics in Agriculture
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Computers and Electr...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Computers and Electronics in Agriculture
      Article
      License: Elsevier Non-Commercial
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computers and Electronics in Agriculture
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kazuki Saito; Salif Diack; Ibnou Dieng; M. Kabirou N'Diaye;

    Nutrient Manager for Rice (NMR) was tested in the Senegal River valley for the three seasons.NMR is a cloud-based decision-support tool for field-specific fertilizer recommendations.NMR increased rice yield by 1-2.3t/ha compared to farmers' fertilizer practice (FFP).NMR increased profitability by US$ 216-640 per ha compared to FFP. We evaluated recommendations provided by a cloud-based decision-support tool named Nutrient Manager for Rice (NMR) in terms of yield of irrigated lowland rice and profitability in comparison with farmers' fertilizer management practices (FFP) in the Senegal River valley. A total of 102 on-farm trials were conducted over the three seasons (2011 wet season, and 2012 and 2013 dry seasons). On average in each season, NMR recommendations increased rice yield by 1-2.3t/ha and profitability by US$ 216-640 per ha compared to FFP. Differences between FFP and NMR performance were mainly related to timing of the top-dressing of N fertilizer (delayed in the case of FFP), the number of N fertilizer applications (generally just one top-dressing for FFP; two or three for NMR), and application of K. We conclude that NMR offers a promising avenue for increasing the productivity and profitability of irrigated lowland rice in the Senegal River valley.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Electr...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Computers and Electronics in Agriculture
    Article . 2015 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    51
    citations51
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Computers and Electr...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Computers and Electronics in Agriculture
      Article . 2015 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph