Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.

  • Rural Digital Europe
  • 2013-2022
  • Restricted
  • LV

Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Meyer-Heim, Andreas; van Hedel, Hubertus J A;

    The field of pediatric neurorehabilitation has rapidly evolved with the introduction of technological advancements over recent years. Rehabilitation robotics and computer-assisted systems can complement conventional physiotherapeutics or occupational therapies. These systems appear promising, especially in children, where exciting and challenging virtual reality scenarios could increase motivation to train intensely in a playful therapeutic environment. Despite promising experience and a large acceptance by the patients and parents, so far, only a few therapy systems have been evaluated in children, and well-designed randomized controlled studies in this field are still lacking. This narrative review aims to provide an overview about the to-date robot-assisted and computer-based therapies and the current level of evidence and to share the authors experience about the clinical implication of these new technologies available for children with cerebral palsy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Seminars in Pediatric Neurology
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Seminars in Pediatric Neurology
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Katarina Kyllmar; Marianne Bechmann; Johannes Deelstra; Arvo Iital; +4 Authors

    Abstract Monitoring of nutrient losses to surface waters at the small agricultural catchment scale has been carried out in seven Nordic and Baltic countries for the past two decades, with the aim of obtaining information on agricultural activities and their impact on surrounding waters. The monitoring methods have been harmonised and in almost all 35 catchments currently being monitored, water samples are taken flow-proportionally, water discharge is measured continuously and information on crops grown and crop management is collected yearly. Here, we evaluate and discuss uncertainties in data and their consequences for fulfilling the aim of the monitoring systems. We also suggest methods and priorities for future monitoring. Although the catchments altogether cover major variations in climate, soil texture and farm type, there is a bias towards more intensive agricultural production compared with the surrounding agricultural regions. For applicability of the results to larger agricultural areas, the representativity of the selected catchments should be stated. The determination of nutrient loads is affected by uncertainties in water discharge measurements, water sampling and chemical analyses, but these uncertainties may decrease over time due to improvements in the methods used. This would improve the possibility to detect trends in the naturally large variation in nutrient loads. For wider applications, the level of nutrient loads at the catchment stream outlet must be related to catchment characteristics such as proportion of agricultural land and contribution from other land uses and point sources. These sources are often estimated based on limited information, but should be included regularly in monitoring schemes. Also data on agricultural activities are related to uncertainties such as coverage of crop management information and nutrient content in manure and harvested products. When data are missing, standard values are used, further contributing to uncertainties. However, intensive monitoring increases awareness of sources of uncertainty in data, and hence the possibility to reduce these uncertainties. Therefore, the intensive monitoring approach should be maintained and rather extended, for example by using sensors for high resolution water quality measurements so that the variations can be identified and related to catchment activities and to processes in streams and groundwater. To further understand these processes and crop management systems, modelling should be closely related to monitoring. With harmonised monitoring programmes where differences in methods are known, focus can be put on the evaluation of data so that further knowledge on the impact of agriculture on the environment can be obtained.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agriculture Ecosystems & Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agriculture Ecosystems & Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Stålnacke, Per; Aakerøy, Paul Andreas; Blicher-Mathiesen, Gitte; Iiatal, Arvo; +6 Authors

    Abstract Long-term monitoring data from catchments with relatively uniform land use is important in order to cover management needs such as implementation of various EU Directives. This paper in a uniform fashion examines the temporal trends in nitrogen (N) concentrations and losses from agricultural catchments in the Nordic and Baltic countries. Thirty-five (35) catchments (range 0.1–33 km 2 ) in Norway (9), Denmark (5), Sweden (8), Finland (4), Estonia (3), Latvia (3) and Lithuania (3) were selected for this study. The longest time series were 23 years (1988–2010), while the shortest one was 10 years (2002–2011). The monthly nitrogen concentration and loss data series were tested for statistical trends ( p The study results show a large variation in nitrogen concentrations and losses among the studied catchments, with a large interannual variability in all catchments. For nitrogen losses, 11 statistically significant trends were detected. Nine of these were downward (four out of five Danish catchments; four out of eight in Sweden; one out of three in Finland). Upward trends were detected in two catchments (one in Estonia and one in Latvia). For nitrogen concentrations, 13 statistically significant trends were detected. 10 of these were downward. Among the 11 catchments that showed trends in nitrogen losses, nine catchments also showed statistically significant trends in the in-stream concentration series. In addition, three more Swedish catchments showed downward trends in the concentration series, and one Estonian catchment showed an upward trend. These results indicate that targeted strategies towards reduced nitrogen losses from agricultural land (as in the case of Denmark and Sweden) may significantly improve nutrient surface water quality in small agricultural catchments

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agriculture Ecosystems & Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agriculture Ecosystems & Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Depner , Martin; Fuchs , Oliver; Genuneit , Jon; Karvonen , Anne M; +16 Authors

    International audience; RATIONALE: Clinical and epidemiologic approaches have identified two distinct sets of classifications for asthma and wheeze phenotypes. OBJECTIVES: To compare epidemiologic phenotype definitions identified by latent class analysis (LCA) with clinical phenotypes based on patient histories, diagnostic work-up, and treatment responses. To relate phenotypes to genetic and environmental determinants as well as diagnostic and treatment-related parameters. METHODS: LCA was performed in an international multicenter birth cohort based on yearly questions about current wheeze until age 6 years. Associations of wheeze classes and clinical phenotypes with asthma-related characteristics such as atopy, lung function, fraction of exhaled nitric oxide, and medication use were calculated using regression models. MEASUREMENTS AND MAIN RESULTS: LCA identified five classes, which verified the clinically defined wheeze phenotypes with high sensitivity and specificity; the respective receiver operating characteristics curves displayed an area under the curve ranging from 84% (frequent wheeze) to 85% (asthma diagnosis) and 87% (unremitting wheeze) to 97% (recurrent unremitting wheeze). Recurrent unremitting wheeze was the most specific and unremitting wheeze at least once the most sensitive definition. The latter identified a subgroup of children with decreased lung function, increased genetic risk, and in utero smoke exposure (ODDS RATIO, 2.03; 95% CONFIDENCE INTERVAL, 1.12-3.68; P = 0.0191), but without established asthma diagnosis and treatment. CONCLUSIONS: Clinical phenotypes were well supported by LCA analysis. The hypothesis-free LCA phenotypes were a useful reference for comparing clinical phenotypes. Thereby, we identified children with clinically conspicuous but undiagnosed disease. Because of their high area under the curve values, clinical phenotypes such as (recurrent) unremitting wheeze emerged as promising alternative asthma definitions for epidemiologic studies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.5167/uzh-10...
    Other literature type . 2014
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    152
    citations152
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Romagnoli, Francesco; Pastare, Laura; Sabūnas, Audrius; Bāliņa, Karīna; +1 Authors

    Abstract Seaweeds are considered a viable feedstock for producing energy through the anaerobic digestion conversion process. Its exploitation and use as an alternative renewable energy source; however, remains marginal in the EU. This study aims to evaluate BMP in batch tests of the brown algae Fucus vesiculosus from the Baltic Sea and collected from the Latvian coast. The lab scale BMP tests were oriented towards the evaluation of the effects of mechanical and microwave pre-treatment methods, as well as the impact of a different algae-to-inoculum (A/I) ratio using: i) cutting blades together with mortar and pestle (C&PM) in combination with the use of a 700 W capacity microwave, ii) 1:3 and 1:5 A/I ratios. The cumulative CH 4 yields show a value in the range of 68 ± 21 mL CH 4 /g VS – a trial with no microwave treatment and A/I of 1:3) and 144 ± 28 mL CH 4 /g VS – a trial including a microwave treatment for 3 min, and A/I ratio of 1:3. The results show effectiveness in the range of 7.8%–43.7%, when the microwave pre-treatment is applied for 1.5 min, and a range of 37.2%–45.2% when the pre-treatment is applied for 3.0 min. The results of this study suggest promising potential for F. vesiculosus for biogas production, especially in the Baltic region.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OceanReparrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    OceanRep
    Article . 2017 . Peer-reviewed
    Data sources: OceanRep
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biomass and Bioenergy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OceanReparrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      OceanRep
      Article . 2017 . Peer-reviewed
      Data sources: OceanRep
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biomass and Bioenergy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hans Estrup Andersen; Gitte Blicher-Mathiesen; Marianne Bechmann; Arvydas Povilaitis; +3 Authors

    Concerns over deteriorating water quality in both freshwater and marine waters have initiated efforts to control diffuse nitrogen (N) losses in all Nordic-Baltic countries. The national strategies for combating diffuse nitrogen losses including selection of mitigation measures, areal extent of measures and incentives for farmers to use the measures differ between the Nordic-Baltic countries. Effects of legislation and other incentives to change agricultural practices and hence to reduce N losses from agriculture are first observed by monitoring close to the source of these losses. Consequently, all Nordic-Baltic countries have set up monitoring programmes including small agriculturally dominated catchments where inputs, outputs and loss of N are followed closely at plot, field and/or catchment scale. We explore the connection between political decisions and regulations, provide an overview of measures and incentives used in the Nordic-Baltic countries, and assess the effect of the measures based on data from national monitoring programmes.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agriculture Ecosystems & Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agriculture Ecosystems & Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Svetlana Batare;

    Veselības vadība Veselības aprūpe Health management Health Care Pētījuma “Jauno ārstu lēmumu strādāt Latvijas reģionos ietekmējošie faktori” mērķis ir noskaidrot faktorus, kas varētu pozitīvi ietekmēt jauno ārstu lēmumu pēc rezidentūras pabeigšanas uzsākt darbu savā specialitātē ārstniecības iestādē Latvijā ārpus Rīgas, novērtēt šo faktoru ietekmes stiprumu un sniegt rekomendācijas politikas veidotajiem. Pētījums ir veikts, lai sniegtu ieguldījumu ārstu nevienmērīgā sadalījuma Latvijas reģionos mazināšanā. Latvijā pastāv būtiskas atšķirības starp ārstu nodrošinājumu Rīgā un reģionos, tāpēc faktoru, kas varētu pozitīvi ietekmēt jauno ārstu lēmumu uzsākt darbu Latvijā ārpus Rīgas, noskaidrošana palīdzētu valsts pārvaldes iestādēm, pašvaldības iestādēm, ārstniecības iestādēm, kā arī augstākās izglītības iestādēm veidot mērķtiecīgus intervenču mehānismus, lai stimulētu jaunos ārstus uzsākt darbu tieši tajās teritorijās, kur viņu specialitāte ir pieprasīta visvairāk. Rezidentu aptaujas rezultāti ļauj secināt, ka jaunie ārsti, pieņemot lēmumu uzsākt darbu Latvijā ārpus Rīgas, visaugstāk novērtē pietiekamu materiālo nodrošinājumu un iespējas kvalitatīvi veikt profesionālos pienākumus. Vidēji augsti tiek vērtēti ar dzīves vidi saistīti faktori, savukārt mazāk nozīmīgas ir izklaides iespējas un kultūras pasākumi, ekoloģiski tīra vide un sabiedrības atzinīgs novērtējums. Tomēr pastāv atšķirības faktoru novērtējumā starp dažādām rezidentu grupām, balstoties uz personīgiem faktoriem. Pētījumā ir apstiprinātas divas no trim izvirzītajām hipotēzēm: Latvijā pastāv saistība starp jaunā ārsta dzimto vietu un potenciālās ārstniecības iestādes atrašanas vietu, kā arī pastāv saistība starp rezidentūras studiju vietas finansējuma veidu un to, vai rezidents pēc studiju beigām plāno sniegt no valsts budžeta apmaksātos veselības aprūpes pakalpojumus. Viena pētījumā izvirzītā hipotēze nav apstiprināta, tātad Latvijā nav saistības starp rezidentūras studiju vietas finansējuma veidu un rezidenta potenciālās ārstniecības iestādes atrašanas vietu, kaut gan šī saistība ir identificēta teorijas pētījumos par citām valstīm. Rezidentu sniegtais viedoklis un ieteikumi politikas veidotājiem iezīmēja ar maksas rezidentūru saistītos jautājumus, kurus būtu ieteicams pētīt padziļināti, kā arī ir nepieciešams turpināt vērtēt vienošanās par darbu ārpus Rīgas slēgšanu kā nosacījumu priekšrocībām uzņemšanā studijām rezidentūrā valsts budžeta vietā un to atbilstību ieviešanas mērķim. Darbs satur 111 lappuses (bez pielikumiem), 40 attēlus, 12 tabulas un 30 pielikumus. Literatūras sarakstā iekļauti 73 literatūras avoti. Darba bibliogrāfiskais pieraksts: Batare, Svetlana. Jauno ārstu lēmumu strādāt Latvijas reģionos ietekmējošie faktori. Maģistra darbs / zinātniskais vadītājs Mg.pharm., Mg.oec., Mg.soc Diāna Ārāja. Rīga: RSU, 2021. 165. lpp. Purpose of the study “Factors influencing the decision of young doctors to work in the regions of Latvia” is to identify factors that could positively influence the decision of young doctors to start working in their specialty in Latvia outside Riga, to assess the strength of these factors and to provide recommendations to policy makers. The study has been conducted to contribute to the reduction of the uneven distribution of doctors in the regions of Latvia. In Latvia, there are significant differences between the provision of doctors in Riga and the regions, therefore, the identification of factors that could positively influence the decision of young doctors to start working in Latvia outside Riga would help public administration institutions, local government institutions, medical institutions and higher education institutions to develop targeted interventions to encourage young doctors to start working in areas where their specialty is in demand the most. The results of the young doctor survey allow to conclude, when making a decision to start working in Latvia outside Riga, they highly evaluate sufficient material resources and opportunities to perform professional duties with high quality. Factors related to the living environment are rated on average, while entertainment and cultural events, ecologically clean environment and public appreciation are less important. However, there are differences in the assessment of factors between groups of young doctor based on personal differences. The study confirms two of the three hypotheses: in Latvia there is a connection between the young doctor's place of birth and the location of the potential medical institution, as well as there is a connection between the type of funding of studies and whether the young doctor plans to provide state paid health care services. One hypothesis in the study has not been confirmed, so in Latvia, there is no link between the type of funding of studies and the location of a potential medical institution of a young doctor, although this connection has been identified in theoretical studies of other countries. The opinion and recommendations provided by the young doctors to policy makers highlighted the issues of self-paid residency studies, which should be researched in depth, as well as the agreement to work outside Riga as a condition for admission to state-paid residency studies and its compliance with the policy objective should be evaluated. The thesis consists of 111 pages (without appendixes), contains 40 figures, 12 tables and 30 appendixes. The list of references includes 73 titles. Please cite this publication as: Batare, Svetlana. Factors influencing the decision of young doctors to work in the regions of Latvia. Master thesis/ Research supervisor Mg.pharm., Mg.oec., Mg.soc Diana Araja. Riga: RSU, 2021. p.165.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Riga Stradiņš Univer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Riga Stradiņš Univer...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Eory, Vera; Pellerin, Sylvain; Carmona Garcia, Gema; Lehtonen, Heikki; +7 Authors

    International audience; Combatting climate change has risen to the top of the international policy discourse. Effective governance necessitates the generation of concise information on the costs-effectiveness of policy instruments aimed at reducing atmospheric greenhouse gas (GHG) emissions. The marginal abatement cost curve (MACC) approach is a framework commonly used to summarise information of potential mitigation effort, and can help in identifying the most cost-effective managerial and technological GHG mitigation options. Agriculture offers key opportunities to mitigate GHG emissions and utilise carbon (C) sink potentials. Therefore, a number of countries have developed national agricultural MACCs in the last decade. Whilst these MACCs have undoubtedly been catalysers for the information exchange between science and policy, they have also accentuated a range of constraints and limitations. In response, each of the scientific teams developed solutions in an attempt to address one or more of these limitations. These solutions represent ‘lessons learned’ which are invaluable for the development of future MACCs. To consolidate and harness this knowledge that has heretofore been dispersed across countries, this paper reviews the engineering agricultural MACCs developed in European countries. We collate the state-of-the-art, review the lessons learnt, and provide a more coherent framework for countries or research groups embarking on a trajectory to develop an agricultural MACC that assesses mitigations both within the farm gate and to the wider bioeconomy. We highlight the contemporary methodological developments, specifically on 1) the emergence of stratified MACCs; 2) accounting for soil carbon sequestration 3) accounting for upstream and downstream emissions; 4) the development of comprehensive cost-calculations; 5) accounting for environmental co-effects and 6) uncertainty analyses. We subsequently discuss how the mitigation potential summarised by MACCs can be incentivised in practice and how this mitigation can be captured in national inventories. We conclude that the main purpose of engineering MACCs is not necessarily the accurate prediction of the total abatement potential and associated costs, but rather the provision of a coherent forum for the complex discussions surrounding agricultural GHG mitigation, and to visualise opportunities and low-hanging fruit in a single graphic and manuscript.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS; Research@WUR
    Other literature type . Article . 2018
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref; NARCIS
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    43
    citations43
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS; Research@WUR
      Other literature type . Article . 2018
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref; NARCIS
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Müller, Jörg; Mitesser, Oliver; Cadotte, Marc W; van der Plas, Fons; +26 Authors

    AbstractIntensification of land use by humans has led to a homogenization of landscapes and decreasing resilience of ecosystems globally due to a loss of biodiversity, including the majority of forests. Biodiversity–ecosystem functioning (BEF) research has provided compelling evidence for a positive effect of biodiversity on ecosystem functions and services at the local (α‐diversity) scale, but we largely lack empirical evidence on how the loss of between‐patch β‐diversity affects biodiversity and multifunctionality at the landscape scale (γ‐diversity). Here, we present a novel concept and experimental framework for elucidating BEF patterns at α‐, β‐, and γ‐scales in real landscapes at a forest management‐relevant scale. We examine this framework using 22 temperate broadleaf production forests, dominated by Fagus sylvatica. In 11 of these forests, we manipulated the structure between forest patches by increasing variation in canopy cover and deadwood. We hypothesized that an increase in landscape heterogeneity would enhance the β‐diversity of different trophic levels, as well as the β‐functionality of various ecosystem functions. We will develop a new statistical framework for BEF studies extending across scales and incorporating biodiversity measures from taxonomic to functional to phylogenetic diversity using Hill numbers. We will further expand the Hill number concept to multifunctionality allowing the decomposition of γ‐multifunctionality into α‐ and β‐components. Combining this analytic framework with our experimental data will allow us to test how an increase in between patch heterogeneity affects biodiversity and multifunctionality across spatial scales and trophic levels to help inform and improve forest resilience under climate change. Such an integrative concept for biodiversity and functionality, including spatial scales and multiple aspects of diversity and multifunctionality as well as physical and environmental structure in forests, will go far beyond the current widely applied approach in forestry to increase resilience of future forests through the manipulation of tree species composition.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS; Research@WUR
    Other literature type . Article . 2023
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    DLR publication server
    Other literature type . 2022
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Global Change Biology
    Article . 2023 . 2022 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref; NARCIS
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS; Research@WUR
      Other literature type . Article . 2023
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      DLR publication server
      Other literature type . 2022
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Global Change Biology
      Article . 2023 . 2022 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref; NARCIS
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Evita Tuļegenova;

    Starptautiskais bizness un ilgtspējīga ekonomika Vadība, administrēšana un nekustamo īpašumu pārvaldība International Business and Sustainable Economy Management, Administration and Real Estate Management Darba temats ir Eiropas Savienības zaļā kursa ietekme uz uzņēmējdarbību Latvijā. Darba mērķis ir noteikt kādas izmaiņas ieviesīs ES zaļais kurss Latvijā, īpaši izceļot uzņēmēju starpā un uzņēmējdarbībā kopumā. Tiek aprakstīts jau esošais teorētiskais materiāls par Eiropas Savienības zaļo kursu, tā īstenotajiem un plānotiem pasākumiem, kā arī kopējiem mērķiem Eiropas Savienībā. Eiropas zaļais kurss ir Eiropas Savienības jaunā izaugsmes stratēģija, kuras mērķis ir panākt klimatneitralitāti ar taisnīgu un pārticīgu sabiedrību, izmantojot mūsdienīgu, resursefektīvu un konkurētspējīgu ekonomiku. Tiekšanās uz klimatneitralitāti sniegs iespējas ekonomikas izaugsmei, jauniem uzņēmējdarbības modeļiem un tirgiem, jaunām darbavietām un tehnoloģiju attīstībai. Ir uzstādīts mērķis panākt klimatneitralitāti līdz 2050.gadam, kas tika paziņots 2019.gada decembrī, bet stājās spēkā 2020.gada decembrī, kas ir salīdzinoši nesen, un ir aktuāls tieši tagad, jo esam posma sākumā, kad varam izplānot un ietekmēt turpmāko valsts darbību. Pētījumā tika izmantotas Monogrāfiskā metode- izmantota, lai apkopotu un izpētītu pieejamo teorētisko informāciju par Eiropas Savienības zaļo kursu, tā prasībām un mērķiem, Loģiski-konstruktīvā- lai izvirzītu secinājumus balstoties uz teorētisko materiālu un praktisko daļu no ekspertu intervijām, Kvalitatīvā metode- lai ievāktu ekspertu intervijas datus un apkopotu tos. Darbā tika atbildēts uz pētniecisko jautājumus un visi izvirzītie uzdevumi tika izpildīti. Atslēgas vārdi ir: uzņēmējdarbība, Eiropas Savienības zaļais kurss, lauksaimniecība, enerģētika, transports. Darbā ir 50 lappuses. Darbā tika izmantoti 20 literatūras avoti. The topic of work is the impact of the European Union Green Deal on entrepreneurship in Latvia. The aim of the work is to determine what changes will be introduced by the EU Green Deal in Latvia, highlighting especially among entrepreneurs and in business in general. The existing theoretical material on the European Union's Green Deal, the measures it has implemented and plans, as well as common objectives in the European Union, is described. The European Green Deal is the European Union's new growth strategy, which aims to achieve climate neutrality with a fair and prosperous society through a modern, resource-efficient and competitive economy. The pursuit of climate neutrality will provide opportunities for economic growth, new business models and markets, new jobs and technological development. The goal of achieving climate neutrality by 2050 has been set, which was announced in December 2019, but came into force in December 2020, which is relatively recent, and is topical right now, because we are at the beginning of the stage when we can plan and influence the future activities of the country. The study used the Monographic Method - will be used to collect and study available theoretical information about the European Union Green Deal, its requirements and objectives, Logically-constructive - to draw conclusions based on theoretical material and practical part of expert interviews, Qualitative method - to collect expert interview data and compile them. The work answered research questions and all the tasks set were fulfilled. The key words are: entrepreneurship, the European Union's Green Deal, agriculture, energy, transport. There are 50 pages at work. 20 sources of literature.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Riga Stradiņš Univer...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Riga Stradiņš Univer...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Meyer-Heim, Andreas; van Hedel, Hubertus J A;

    The field of pediatric neurorehabilitation has rapidly evolved with the introduction of technological advancements over recent years. Rehabilitation robotics and computer-assisted systems can complement conventional physiotherapeutics or occupational therapies. These systems appear promising, especially in children, where exciting and challenging virtual reality scenarios could increase motivation to train intensely in a playful therapeutic environment. Despite promising experience and a large acceptance by the patients and parents, so far, only a few therapy systems have been evaluated in children, and well-designed randomized controlled studies in this field are still lacking. This narrative review aims to provide an overview about the to-date robot-assisted and computer-based therapies and the current level of evidence and to share the authors experience about the clinical implication of these new technologies available for children with cerebral palsy.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Seminars in Pediatric Neurology
    Article . 2013 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    70
    citations70
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Seminars in Pediatric Neurology
      Article . 2013 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Katarina Kyllmar; Marianne Bechmann; Johannes Deelstra; Arvo Iital; +4 Authors

    Abstract Monitoring of nutrient losses to surface waters at the small agricultural catchment scale has been carried out in seven Nordic and Baltic countries for the past two decades, with the aim of obtaining information on agricultural activities and their impact on surrounding waters. The monitoring methods have been harmonised and in almost all 35 catchments currently being monitored, water samples are taken flow-proportionally, water discharge is measured continuously and information on crops grown and crop management is collected yearly. Here, we evaluate and discuss uncertainties in data and their consequences for fulfilling the aim of the monitoring systems. We also suggest methods and priorities for future monitoring. Although the catchments altogether cover major variations in climate, soil texture and farm type, there is a bias towards more intensive agricultural production compared with the surrounding agricultural regions. For applicability of the results to larger agricultural areas, the representativity of the selected catchments should be stated. The determination of nutrient loads is affected by uncertainties in water discharge measurements, water sampling and chemical analyses, but these uncertainties may decrease over time due to improvements in the methods used. This would improve the possibility to detect trends in the naturally large variation in nutrient loads. For wider applications, the level of nutrient loads at the catchment stream outlet must be related to catchment characteristics such as proportion of agricultural land and contribution from other land uses and point sources. These sources are often estimated based on limited information, but should be included regularly in monitoring schemes. Also data on agricultural activities are related to uncertainties such as coverage of crop management information and nutrient content in manure and harvested products. When data are missing, standard values are used, further contributing to uncertainties. However, intensive monitoring increases awareness of sources of uncertainty in data, and hence the possibility to reduce these uncertainties. Therefore, the intensive monitoring approach should be maintained and rather extended, for example by using sensors for high resolution water quality measurements so that the variations can be identified and related to catchment activities and to processes in streams and groundwater. To further understand these processes and crop management systems, modelling should be closely related to monitoring. With harmonised monitoring programmes where differences in methods are known, focus can be put on the evaluation of data so that further knowledge on the impact of agriculture on the environment can be obtained.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Agriculture Ecosystems & Environment
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    30
    citations30
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao PURE Aarhus Universi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Agriculture Ecosystems & Environment
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao