- home
- Advanced Search
Filters
Clear AllLoading
description Publicationkeyboard_double_arrow_right Master thesis 2023 Latvia LatvianLatvijas Universitāte Authors: Leja, Ieva;Leja, Ieva;In this master's thesis, the challenge tackled is the identification of vegetation (fallow field or winter crop or cover crop) in agricultural lands using multispectral satellite data. The objective of the thesis is to collate established research methodologies, develop and evaluate a classification algorithm, test different features, and assess the algorithm's spatial and temporal transferibality. Two classification models were developed, a random forest and a multilayer neural network, and trained on data in Estonia from 2019 to 2021. Both models yielded comparable accuracy rates: 84 % for the random forest and 83 % for the neural network. The neural network was superior on the 2022 data and in a different region. The inclusion of 0.1 and 0.9 quantiles of each index per field to the features improved the accuracy of both models. Maģistra darbā tiek aplūkota veģetācijas (neapsēts lauks vai ziemāji vai starpkultūra) noteikšana lauksaimniecības zemēs, izmantojot multispektrālos satelītdatus. Darba mērķis ir apkopot līdzšinējo pētījumu pieejas un, izmēģinot dažādas ieejas datu kombinācijas, izveidot un novērtēt klasifikācijas algoritmu, kā arī izpētīt šī algoritma precizitāti citā laikā un reģionā. Tika izveidoti divi klasifikācijas modeļi: gadījuma mežs un daudzslāņu neironu tīkls, kas tika apmācīti uz Igaunijas datiem no 2019. līdz 2021. gadam. Abiem modeļiem bij līdzīgīga precizitāte: 84 % gadījuma mežam un 83 % neironu tīklam, taču neironu tīkls bija pārāks uz 2022. gada datiem un citā reģionā. Abiem modeļiem precizitāti paaugstināja 0.1 un 0.9 kvantiļu katram indeksam katram laukam pievienošana ieejas datiem.
E-resource repositor... arrow_drop_down E-resource repository of the University of LatviaMaster thesis . 2023Data sources: E-resource repository of the University of LatviaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2360::7f768724b4dd1a50a0f229a50ca9f6b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert E-resource repositor... arrow_drop_down E-resource repository of the University of LatviaMaster thesis . 2023Data sources: E-resource repository of the University of LatviaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2360::7f768724b4dd1a50a0f229a50ca9f6b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Loading
description Publicationkeyboard_double_arrow_right Master thesis 2023 Latvia LatvianLatvijas Universitāte Authors: Leja, Ieva;Leja, Ieva;In this master's thesis, the challenge tackled is the identification of vegetation (fallow field or winter crop or cover crop) in agricultural lands using multispectral satellite data. The objective of the thesis is to collate established research methodologies, develop and evaluate a classification algorithm, test different features, and assess the algorithm's spatial and temporal transferibality. Two classification models were developed, a random forest and a multilayer neural network, and trained on data in Estonia from 2019 to 2021. Both models yielded comparable accuracy rates: 84 % for the random forest and 83 % for the neural network. The neural network was superior on the 2022 data and in a different region. The inclusion of 0.1 and 0.9 quantiles of each index per field to the features improved the accuracy of both models. Maģistra darbā tiek aplūkota veģetācijas (neapsēts lauks vai ziemāji vai starpkultūra) noteikšana lauksaimniecības zemēs, izmantojot multispektrālos satelītdatus. Darba mērķis ir apkopot līdzšinējo pētījumu pieejas un, izmēģinot dažādas ieejas datu kombinācijas, izveidot un novērtēt klasifikācijas algoritmu, kā arī izpētīt šī algoritma precizitāti citā laikā un reģionā. Tika izveidoti divi klasifikācijas modeļi: gadījuma mežs un daudzslāņu neironu tīkls, kas tika apmācīti uz Igaunijas datiem no 2019. līdz 2021. gadam. Abiem modeļiem bij līdzīgīga precizitāte: 84 % gadījuma mežam un 83 % neironu tīklam, taču neironu tīkls bija pārāks uz 2022. gada datiem un citā reģionā. Abiem modeļiem precizitāti paaugstināja 0.1 un 0.9 kvantiļu katram indeksam katram laukam pievienošana ieejas datiem.
E-resource repositor... arrow_drop_down E-resource repository of the University of LatviaMaster thesis . 2023Data sources: E-resource repository of the University of LatviaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2360::7f768724b4dd1a50a0f229a50ca9f6b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert E-resource repositor... arrow_drop_down E-resource repository of the University of LatviaMaster thesis . 2023Data sources: E-resource repository of the University of LatviaAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______2360::7f768724b4dd1a50a0f229a50ca9f6b0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu