Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
31 Research products (1 rule applied)

  • Rural Digital Europe
  • Restricted

10
arrow_drop_down
Relevance
arrow_drop_down
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saby, Nicolas P.A.; Lemercier, Blandine; Arrouays, Dominique; Walter, Christian; +4 Authors

    In France, farmers commission about 250,000 soil-testing analyses per year to assist them managing soil fertility. The number and diversity of origin of the samples make these analyses an interesting and original information source regarding cultivated topsoil variability. Moreover, these analyses relate to several parameters strongly influenced by human activity (macronutrient contents, pH...), for which existing cartographic information is not very relevant. Compiling the results of these analyses into a database makes it possible to re-use these data within both a national and temporal framework. A database compilation relating to data collected over the period 1990-2014 has been recently achieved. So far, commercial soil-testing laboratories approved by the Ministry of Agriculture have provided analytical results from more than 3,600,000 samples. After the initial quality control stage, analytical results from more than 1,900,000 samples were available in the database. The anonymity of the landholders seeking soil analyses is perfectly preserved, as the only identifying information stored is the location of the nearest administrative city to the sample site. We present in this dataset a set of statistical parameters of the spatial distributions for several agronomic soil properties. These statistical parameters are calculated for 4 different nested spatial entities (administrative areas: e.g. regions, departments, counties and agricultural areas) and for 5 time periods (1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014). Two kinds of agronomic soil properties are available: the first one correspond to the quantitative variables like the organic carbon content, and the second one corresponds to the qualitative variables like the texture class. For each spatial unit and temporal period, we calculated the following statistics sets: the first set is calculated for the quantitative variables and corresponds to the number of samples, the mean, the standard deviation and, the 2-,4-,10-quantiles; the second set is calculated for the qualitative variables and corresponds to the number of samples, the value of the dominant class, the number of samples of the dominant class, the second dominant class, the number of samples of the second dominant class.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recherche Data Gouvarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recherche Data Gouvarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tonteri, Kari;

    Automaattiset ödometrikokeet ovat yleistyneet viime vuosina myös Suomessa. Niistä saatuja kokemuksia ei meillä kuitenkaan ole toistaiseksi sanottavasti analysoitu. Tässä tutkimuksessa on vertailtu kahdella eri tavoin toteutetulla automaattisella laitteella tehtyjä kokeita keskenään sekä lisäksi tavanomaisiin ödometrikokeisiin. Automaattisissa kokeissa koe suoritetaan tietokoneen ohjaamana yleensä ilman valvontaa. Myös kokeiden alustava tulkinta tehdään tietokoneella kokeen valmistuttua. Tämän tutkimuksen pohjalta on pyritty yhtenäistämään sekä suoritusta ohjaavia että tulkintaohjelmistoja. Kokeiden samankaltainen tulkinta on edellytys eri laitteilla tehtyjen kokeiden tulosten vertailukelpoisuudelle. Lopuksi on esitetty näkökohtia asioista, joita olisi selvitettävä ennen kuin varsinaisia standardinomaisia ohjeita voidaan laatia. Automaattiset ödometrikokeet ovat joka tapauksessa myös Suomessa tulleet korvaamaan rutiinikäytössä manuaaliset laitteet.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VTT Research Informa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VTT Research Informa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other nutrients can be spoon-fed to crops, through frequent applications of small amounts, to the immediate root zone as required by the crop. In commercial farming practice, management of combined drip/fertigation systems generally does not take advantage of this potential for precise N management. As is common in commercial farming, management of both irrigation and N with drip/fertigation systems is generally based on growers' experience, with the objective of avoiding deficiencies that may limit production. Because of frequent N application, the established improved nutrient management strategies, based on infrequent soil testing, pre-plant and one or two side-dress applications, are of limited value. With drip/fertigation, dynamic N management approaches are required so that the capacity for frequent small applications can be fully exploited to provide (a) site and season specific management and (b) dynamic responses to temporal N requirements. Dynamic irrigation management is required for the same reasons. Modelling and monitoring approaches and combinations of the two enable exploitation of the technical capacity for precise N and irrigation management. Decision support systems (DSS) based on simple simulation models with limited data inputs can provide crop specific plans of daily N and irrigation requirements. The use of soil moisture sensors is an effective and proven monitoring approach for irrigation management. For monitoring of soil/crop N status, soil monitoring through regular sampling of soil-water extracts and soil solution is being used, and crop/plant monitoring approaches such as with proximal optical sensors and petiole sap analysis are promising methods.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS
    Part of book or chapter of book . 2017
    Data sources: NARCIS
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS
      Part of book or chapter of book . 2017
      Data sources: NARCIS
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: van Vliet, J.A.; Giller, K.E.;

    Cocoa is an important global commodity. It is mostly grown on small farms by millions of cocoa farmers who depend on the crop for their livelihood. Although potential yields exceed 6000. kg/ha, average farm yields are often around 400. kg/ha. Among the production constraints met by farmers is nutrient limitation. In this review, we compile current knowledge on nutrient cycling in cocoa production systems, nutrient requirements of cocoa, and yield response to fertilizer application in relation to factors such as management, climatic, and soil conditions. Large amounts of nutrients are cycled within cocoa systems, mostly through 5-10. t/ha/yr litter fall. Still, harvesting and small nutrient losses such as leaching lead to nutrient exports causing gradual soil nutrient depletion. Exact nutrient requirements of cocoa are unknown. Leaf and soil test interpretation to identify additional nutrient needs remain ambiguous. Recommended nutrient application rates vary more than 10-fold. In several trials fertilizer application more than doubled cocoa productivity; in other cases response is minimal. Differences in response between regions, fields and even trees have yet to be explained. Interactions with agroecology and management (especially shade) are poorly understood. Without this fundamental knowledge, farm level recommendations have a weak scientific base. Different types of research are recommended to complement current knowledge. Existing data and trials can be exploited through additional analysis and more detailed measurements. Cocoa farms are highly diverse and on-farm trials offer opportunities for understanding variability in production and fertilizer response. Finally, multifactorial shade-fertilizer response trials will be essential to address some of the fundamental knowledge gaps.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS; Research@WUR
    Other literature type . Article . 2017
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS; Research@WUR
      Other literature type . Article . 2017
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Cocoa is an important global commodity. It is mostly grown on small farms by millions of cocoa farmers who depend on the crop for their livelihood. Although potential yields exceed 6000. kg/ha, average farm yields are often around 400. kg/ha. Among the production constraints met by farmers is nutrient limitation. In this review, we compile current knowledge on nutrient cycling in cocoa production systems, nutrient requirements of cocoa, and yield response to fertilizer application in relation to factors such as management, climatic, and soil conditions. Large amounts of nutrients are cycled within cocoa systems, mostly through 5-10. t/ha/yr litter fall. Still, harvesting and small nutrient losses such as leaching lead to nutrient exports causing gradual soil nutrient depletion. Exact nutrient requirements of cocoa are unknown. Leaf and soil test interpretation to identify additional nutrient needs remain ambiguous. Recommended nutrient application rates vary more than 10-fold. In several trials fertilizer application more than doubled cocoa productivity; in other cases response is minimal. Differences in response between regions, fields and even trees have yet to be explained. Interactions with agroecology and management (especially shade) are poorly understood. Without this fundamental knowledge, farm level recommendations have a weak scientific base. Different types of research are recommended to complement current knowledge. Existing data and trials can be exploited through additional analysis and more detailed measurements. Cocoa farms are highly diverse and on-farm trials offer opportunities for understanding variability in production and fertilizer response. Finally, multifactorial shade-fertilizer response trials will be essential to address some of the fundamental knowledge gaps.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Velthof, G.L.; Oenema, O.; Nelemans, J.A.;

    De stikstof (N-) efficiëntie van akkerbouwsystemen als onderdeel van duurzame landbouw. Verslag van een studie waarin verschillende chemischer en biologische indicatorene voor N-mineralisatie zijn getest voor 15 verwchillende gronden. Gegevens in bijgaande tabellen: karakteristieken van de gronden die in het onderzoek zijn gebruikt; korte beschrijving van de verschillende methoden; mineralisatie in de potproef, incubatieproef en reactorproef, hot KCL extraheerbare NH4, potentiële denitrificatie (DNP) en N-verlies bij verhitten tot 350 graden Celcius; correlatiecoëfficienten voor de verschillende indicatoren voor mineralisatie. Alle waarden zijn logaritmisch getransformeerd Nitrogen (N) efficiency in arable cropping systems can be improved when the expected N mineralization in soil during the growing season is accounted for in the N fertilizer recommendation. There are yet no standard procedures to estimate the amount o

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS; Research@WUR
    Other literature type . Article . Contribution for newspaper or weekly magazine . 2000
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS; Research@WUR
      Other literature type . Article . Contribution for newspaper or weekly magazine . 2000
  • Nitrogen (N) efficiency in arable cropping systems can be improved when the expected N mineralization in soil during the growing season is accounted for in the N fertilizer recommendation. There are yet no standard procedures to estimate the amount o

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Rural Digital Europe. Are you interested to view more results? Visit OpenAIRE - Explore.
31 Research products (1 rule applied)
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Saby, Nicolas P.A.; Lemercier, Blandine; Arrouays, Dominique; Walter, Christian; +4 Authors

    In France, farmers commission about 250,000 soil-testing analyses per year to assist them managing soil fertility. The number and diversity of origin of the samples make these analyses an interesting and original information source regarding cultivated topsoil variability. Moreover, these analyses relate to several parameters strongly influenced by human activity (macronutrient contents, pH...), for which existing cartographic information is not very relevant. Compiling the results of these analyses into a database makes it possible to re-use these data within both a national and temporal framework. A database compilation relating to data collected over the period 1990-2014 has been recently achieved. So far, commercial soil-testing laboratories approved by the Ministry of Agriculture have provided analytical results from more than 3,600,000 samples. After the initial quality control stage, analytical results from more than 1,900,000 samples were available in the database. The anonymity of the landholders seeking soil analyses is perfectly preserved, as the only identifying information stored is the location of the nearest administrative city to the sample site. We present in this dataset a set of statistical parameters of the spatial distributions for several agronomic soil properties. These statistical parameters are calculated for 4 different nested spatial entities (administrative areas: e.g. regions, departments, counties and agricultural areas) and for 5 time periods (1990-1994, 1995-1999, 2000-2004, 2005-2009, 2010-2014). Two kinds of agronomic soil properties are available: the first one correspond to the quantitative variables like the organic carbon content, and the second one corresponds to the qualitative variables like the texture class. For each spatial unit and temporal period, we calculated the following statistics sets: the first set is calculated for the quantitative variables and corresponds to the number of samples, the mean, the standard deviation and, the 2-,4-,10-quantiles; the second set is calculated for the qualitative variables and corresponds to the number of samples, the value of the dominant class, the number of samples of the dominant class, the second dominant class, the number of samples of the second dominant class.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recherche Data Gouvarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recherche Data Gouvarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tonteri, Kari;

    Automaattiset ödometrikokeet ovat yleistyneet viime vuosina myös Suomessa. Niistä saatuja kokemuksia ei meillä kuitenkaan ole toistaiseksi sanottavasti analysoitu. Tässä tutkimuksessa on vertailtu kahdella eri tavoin toteutetulla automaattisella laitteella tehtyjä kokeita keskenään sekä lisäksi tavanomaisiin ödometrikokeisiin. Automaattisissa kokeissa koe suoritetaan tietokoneen ohjaamana yleensä ilman valvontaa. Myös kokeiden alustava tulkinta tehdään tietokoneella kokeen valmistuttua. Tämän tutkimuksen pohjalta on pyritty yhtenäistämään sekä suoritusta ohjaavia että tulkintaohjelmistoja. Kokeiden samankaltainen tulkinta on edellytys eri laitteilla tehtyjen kokeiden tulosten vertailukelpoisuudelle. Lopuksi on esitetty näkökohtia asioista, joita olisi selvitettävä ennen kuin varsinaisia standardinomaisia ohjeita voidaan laatia. Automaattiset ödometrikokeet ovat joka tapauksessa myös Suomessa tulleet korvaamaan rutiinikäytössä manuaaliset laitteet.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VTT Research Informa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao VTT Research Informa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Fertigation in combination with drip irrigation is being increasingly used in vegetable crop production. From a nutrient management perspective, this combination provides the technical capacity for precise nitrogen (N) nutrition, both spatially and temporally. With these systems, N and other nutrients can be spoon-fed to crops, through frequent applications of small amounts, to the immediate root zone as required by the crop. In commercial farming practice, management of combined drip/fertigation systems generally does not take advantage of this potential for precise N management. As is common in commercial farming, management of both irrigation and N with drip/fertigation systems is generally based on growers' experience, with the objective of avoiding deficiencies that may limit production. Because of frequent N application, the established improved nutrient management strategies, based on infrequent soil testing, pre-plant and one or two side-dress applications, are of limited value. With drip/fertigation, dynamic N management approaches are required so that the capacity for frequent small applications can be fully exploited to provide (a) site and season specific management and (b) dynamic responses to temporal N requirements. Dynamic irrigation management is required for the same reasons. Modelling and monitoring approaches and combinations of the two enable exploitation of the technical capacity for precise N and irrigation management. Decision support systems (DSS) based on simple simulation models with limited data inputs can provide crop specific plans of daily N and irrigation requirements. The use of soil moisture sensors is an effective and proven monitoring approach for irrigation management. For monitoring of soil/crop N status, soil monitoring through regular sampling of soil-water extracts and soil solution is being used, and crop/plant monitoring approaches such as with proximal optical sensors and petiole sap analysis are promising methods.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS
    Part of book or chapter of book . 2017
    Data sources: NARCIS
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCISarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS
      Part of book or chapter of book . 2017
      Data sources: NARCIS
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: van Vliet, J.A.; Giller, K.E.;

    Cocoa is an important global commodity. It is mostly grown on small farms by millions of cocoa farmers who depend on the crop for their livelihood. Although potential yields exceed 6000. kg/ha, average farm yields are often around 400. kg/ha. Among the production constraints met by farmers is nutrient limitation. In this review, we compile current knowledge on nutrient cycling in cocoa production systems, nutrient requirements of cocoa, and yield response to fertilizer application in relation to factors such as management, climatic, and soil conditions. Large amounts of nutrients are cycled within cocoa systems, mostly through 5-10. t/ha/yr litter fall. Still, harvesting and small nutrient losses such as leaching lead to nutrient exports causing gradual soil nutrient depletion. Exact nutrient requirements of cocoa are unknown. Leaf and soil test interpretation to identify additional nutrient needs remain ambiguous. Recommended nutrient application rates vary more than 10-fold. In several trials fertilizer application more than doubled cocoa productivity; in other cases response is minimal. Differences in response between regions, fields and even trees have yet to be explained. Interactions with agroecology and management (especially shade) are poorly understood. Without this fundamental knowledge, farm level recommendations have a weak scientific base. Different types of research are recommended to complement current knowledge. Existing data and trials can be exploited through additional analysis and more detailed measurements. Cocoa farms are highly diverse and on-farm trials offer opportunities for understanding variability in production and fertilizer response. Finally, multifactorial shade-fertilizer response trials will be essential to address some of the fundamental knowledge gaps.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS; Research@WUR
    Other literature type . Article . 2017
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS; Research@WUR
      Other literature type . Article . 2017
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    Cocoa is an important global commodity. It is mostly grown on small farms by millions of cocoa farmers who depend on the crop for their livelihood. Although potential yields exceed 6000. kg/ha, average farm yields are often around 400. kg/ha. Among the production constraints met by farmers is nutrient limitation. In this review, we compile current knowledge on nutrient cycling in cocoa production systems, nutrient requirements of cocoa, and yield response to fertilizer application in relation to factors such as management, climatic, and soil conditions. Large amounts of nutrients are cycled within cocoa systems, mostly through 5-10. t/ha/yr litter fall. Still, harvesting and small nutrient losses such as leaching lead to nutrient exports causing gradual soil nutrient depletion. Exact nutrient requirements of cocoa are unknown. Leaf and soil test interpretation to identify additional nutrient needs remain ambiguous. Recommended nutrient application rates vary more than 10-fold. In several trials fertilizer application more than doubled cocoa productivity; in other cases response is minimal. Differences in response between regions, fields and even trees have yet to be explained. Interactions with agroecology and management (especially shade) are poorly understood. Without this fundamental knowledge, farm level recommendations have a weak scientific base. Different types of research are recommended to complement current knowledge. Existing data and trials can be exploited through additional analysis and more detailed measurements. Cocoa farms are highly diverse and on-farm trials offer opportunities for understanding variability in production and fertilizer response. Finally, multifactorial shade-fertilizer response trials will be essential to address some of the fundamental knowledge gaps.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Velthof, G.L.; Oenema, O.; Nelemans, J.A.;

    De stikstof (N-) efficiëntie van akkerbouwsystemen als onderdeel van duurzame landbouw. Verslag van een studie waarin verschillende chemischer en biologische indicatorene voor N-mineralisatie zijn getest voor 15 verwchillende gronden. Gegevens in bijgaande tabellen: karakteristieken van de gronden die in het onderzoek zijn gebruikt; korte beschrijving van de verschillende methoden; mineralisatie in de potproef, incubatieproef en reactorproef, hot KCL extraheerbare NH4, potentiële denitrificatie (DNP) en N-verlies bij verhitten tot 350 graden Celcius; correlatiecoëfficienten voor de verschillende indicatoren voor mineralisatie. Alle waarden zijn logaritmisch getransformeerd Nitrogen (N) efficiency in arable cropping systems can be improved when the expected N mineralization in soil during the growing season is accounted for in the N fertilizer recommendation. There are yet no standard procedures to estimate the amount o

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    NARCIS; Research@WUR
    Other literature type . Article . Contribution for newspaper or weekly magazine . 2000
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NARCIS; Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      NARCIS; Research@WUR
      Other literature type . Article . Contribution for newspaper or weekly magazine . 2000
  • Nitrogen (N) efficiency in arable cropping systems can be improved when the expected N mineralization in soil during the growing season is accounted for in the N fertilizer recommendation. There are yet no standard procedures to estimate the amount o

    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • 0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert